Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(5): e0302496, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38709760

RESUMO

Adult mosquitoes require regular sugar meals, including nectar, to survive in natural habitats. Both males and females locate potential sugar sources using sensory proteins called odorant receptors (ORs) activated by plant volatiles to orient toward flowers or honeydew. The yellow fever mosquito, Aedes aegypti (Linnaeus, 1762), possesses a large gene family of ORs, many of which are likely to detect floral odors. In this study, we have uncovered ligand-receptor pairings for a suite of Aedes aegypti ORs using a panel of environmentally relevant, plant-derived volatile chemicals and a heterologous expression system. Our results support the hypothesis that these odors mediate sensory responses to floral odors in the mosquito's central nervous system, thereby influencing appetitive or aversive behaviors. Further, these ORs are well conserved in other mosquitoes, suggesting they function similarly in diverse species. This information can be used to assess mosquito foraging behavior and develop novel control strategies, especially those that incorporate mosquito bait-and-kill technologies.


Assuntos
Aedes , Flores , Receptores Odorantes , Compostos Orgânicos Voláteis , Animais , Aedes/fisiologia , Aedes/metabolismo , Receptores Odorantes/metabolismo , Receptores Odorantes/genética , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/análise , Feminino , Masculino , Febre Amarela/transmissão , Odorantes/análise , Plantas/metabolismo , Plantas/química
2.
J Med Entomol ; 60(5): 1022-1029, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37348932

RESUMO

Around the world, mosquitoes continue to transmit disease-causing pathogens and develop resistance to insecticides. We previously discovered that a generally regarded as safe (GRAS) compound, 1,2-propanediol, reduces adult mosquito survivorship when ingested. In this study, we assess and compare 5 more chemically related compounds for mosquito lethality and 8 GRAS sugar substitutes to determine toxicity. We conducted a series of feeding assays to determine if ingesting the compounds influenced mosquito mean survivorship in locally collected lab-reared populations of Aedes aegypti (Diptera, Culicidae, Linnaeus, 1762) and Aedes albopictus (Diptera, Culicidae, Skuse, 1894) mosquitoes. Our results indicate that 1,2-propanediol, 1,3-propanediol, 1,5-pentanediol, 1,6-hexanediol, 2-methyl-1,3-propanediol, DL-dithiothreitol, acesulfame potassium, allulose, erythritol, sodium saccharin, stevia, and sucralose significantly reduced the mean survivorship of one or both species. Short-term trials with the most toxic compounds revealed that they could substantially affect survivorship after 24 h. We also found that there were different responses in the 2 species and that in several experimental conditions, male mosquitoes expired to a greater extent than female mosquitoes. These findings indicate that several of the compounds are toxic to mosquitoes. Further study is required to determine their effectiveness in attractive toxic sugar baits (ATSBs) as a potential component of population control strategies.


Assuntos
Aedes , Inseticidas , Masculino , Feminino , Animais , Açúcares , Aedes/fisiologia , Edulcorantes/farmacologia , Propilenoglicol , Controle de Mosquitos/métodos , Carboidratos
3.
Chem Senses ; 472022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36458901

RESUMO

Insects rely on olfactory receptors to detect and respond to diverse environmental chemical cues. Detection of semiochemicals by these receptors modulates insect behavior and has a direct impact on species fitness. Volatile organic compounds (VOCs) are released by animals and plants and can provide contextual cues that a blood meal host or nectar source is present. One such VOC is linalool, an enantiomeric monoterpene, that is emitted from plants and bacteria species. This compound exists in nature as one of two possible stereoisomers, (R)-(-)-linalool or (S)-(+)-linalool. In this study, we use a heterologous expression system to demonstrate differential responsiveness of a pair of Anopheline odorant receptors (Ors) to enantiomers of linalool. The mosquitoes Anopheles gambiae and Anopheles stephensi encode single copies of Or29 and Or53, which are expressed in the labella of An. gambiae. (S)-(+)-linalool activates Or29 orthologs with a higher potency than (R)-(-)-linalool, while the converse is observed for Or53 orthologs. The conservation of these receptors across a broad range of Anopheline species suggests they may function in the discrimination of linalool stereoisomers, thereby influencing the chemical ecology of mosquitoes. One potential application of this knowledge would be in the design of novel attractants or repellents to be used in integrated pest management practices.


Assuntos
Anopheles , Receptores Odorantes , Animais , Monoterpenos Acíclicos , Monoterpenos/farmacologia , Receptores Odorantes/genética
4.
Insects ; 13(7)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35886771

RESUMO

Arthropod control mechanisms are a vital part of public health measures around the world as many insect species serve as vectors for devastating human diseases. Aedes aegypti (Linnaeus, 1762) is a widely distributed, medically important mosquito species that transmits viruses such as yellow fever, Dengue, and Zika. Many traditional control mechanisms have become less effective due to insecticide resistance or exhibit unwanted off-target effects, and, consequently, there is a need for novel solutions. The use of attractive toxic sugar baits (ATSBs) has increased in recent years, though the toxic elements are often harmful to humans and other vertebrates. Therefore, we are investigating propylene glycol, a substance that is generally regarded as safe (GRAS) for human consumption. Using a series of feeding assays, we found that propylene glycol is highly toxic to Ae. aegypti adults and a single day of exposure significantly reduces the survivorship of test populations compared with controls. The effects are more pronounced in males, drastically reducing their survivorship after one day of consumption. Additionally, the consumption of propylene glycol reduced the survivorship of two prominent disease vectors: Aedes albopictus (Skuse, 1894) and Culex pipiens (Linnaeus, 1758). These findings indicate that propylene glycol could be used as a safe and effective alternative to pesticides in an ATSB system.

5.
JACC Adv ; 1(4)2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36643021

RESUMO

BACKGROUND: Timely referral for specialist evaluation in patients with advanced heart failure (HF) is a Class 1 recommendation. However, the transition from stage C HF to advanced or stage D HF often goes undetected in routine care, resulting in delayed referral and higher mortality rates. OBJECTIVES: The authors sought to develop an augmented intelligence-enabled workflow using machine learning to identify patients with stage D HF and streamline referral. METHODS: We extracted data on HF patients with encounters from January 1, 2007, to November 30, 2020, from a HF registry within a regional, integrated health system. We created an ensemble machine learning model to predict stage C or stage D HF and integrated the results within the electronic health record. RESULTS: In a retrospective data set of 14,846 patients, the model had a good positive predictive value (60%) and low sensitivity (25%) for identifying stage D HF in a 100-person, physician-reviewed, holdout test set. During prospective implementation of the workflow from April 1, 2021, to February 15, 2022, 416 patients were reviewed by a clinical coordinator, with agreement between the model and the coordinator in 50.3% of stage D predictions. Twenty-four patients have been scheduled for evaluation in a HF clinic, 4 patients started an evaluation for advanced therapies, and 1 patient received a left ventricular assist device. CONCLUSIONS: An augmented intelligence-enabled workflow was integrated into clinical operations to identify patients with advanced HF. Endeavors such as this require a multidisciplinary team with experience in design thinking, informatics, quality improvement, operations, and health information technology, as well as dedicated resources to monitor and improve performance over time.

6.
Genome Biol Evol ; 6(10): 2883-96, 2014 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-25326137

RESUMO

Many mosquito species serve as vectors of diseases such as malaria and yellow fever, wherein pathogen transmission is tightly associated with the reproductive requirement of taking vertebrate blood meals. Toxorhynchites is one of only three known mosquito genera that does not host-seek and initiates egg development in the absence of a blood-derived protein bolus. These remarkable differences make Toxorhynchites an attractive comparative reference for understanding mosquito chemosensation as it pertains to host-seeking. We performed deep transcriptome profiling of adult female Toxorhynchites amboinensis bodies, antennae and maxillary palps, and identified 25,084 protein-coding "genes" in the de novo assembly. Phylogenomic analysis of 4,266 single-copy "genes" from T. amboinensis, Aedes aegypti, Anopheles gambiae, and Culex quinquefasciatus robustly supported Ae. aegypti as the closest relative of T. amboinensis, with the two species diverged approximately 40 Ma. We identified a large number of T. amboinensis chemosensory "genes," the majority of which have orthologs in other mosquitoes. Finally, cross-species expression analyses indicated that patterns of chemoreceptor transcript abundance were very similar for chemoreceptors that are conserved between T. amboinensis and Ae. aegypti, whereas T. amboinensis appeared deficient in the variety of expressed, lineage-specific chemoreceptors. Our transcriptome assembly of T. amboinensis represents the first comprehensive genomic resource for a nonblood-feeding mosquito and establishes a foundation for future comparative studies of blood-feeding and nonblood-feeding mosquitoes. We hypothesize that chemosensory genes that display discrete patterns of evolution and abundance between T. amboinensis and blood-feeding mosquitoes are likely to play critical roles in host-seeking and hence the vectorial capacity.


Assuntos
Culicidae/genética , Animais , Culicidae/classificação , Culicidae/metabolismo , Filogenia , Transcriptoma/genética
7.
BMC Genomics ; 14: 749, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24182346

RESUMO

BACKGROUND: Two sibling members of the Anopheles gambiae species complex display notable differences in female blood meal preferences. An. gambiae s.s. has a well-documented preference for feeding upon human hosts, whereas An. quadriannulatus feeds on vertebrate/mammalian hosts, with only opportunistic feeding upon humans. Because mosquito host-seeking behaviors are largely driven by the sensory modality of olfaction, we hypothesized that hallmarks of these divergent host seeking phenotypes will be in evidence within the transcriptome profiles of the antennae, the mosquito's principal chemosensory appendage. RESULTS: To test this hypothesis, we have sequenced antennal mRNA of non-bloodfed females from each species and observed a number of distinct quantitative and qualitative differences in their chemosensory gene repertoires. In both species, these gene families show higher rates of sequence polymorphisms than the overall rates in their respective transcriptomes, with potentially important divergences between the two species. Moreover, quantitative differences in odorant receptor transcript abundances have been used to model potential distinctions in volatile odor receptivity between the two sibling species of anophelines. CONCLUSION: This analysis suggests that the anthropophagic behavior of An. gambiae s.s. reflects the differential distribution of olfactory receptors in the antenna, likely resulting from a co-option and refinement of molecular components common to both species. This study improves our understanding of the molecular evolution of chemoreceptors in closely related anophelines and suggests possible mechanisms that underlie the behavioral distinctions in host seeking that, in part, account for the differential vectorial capacity of these mosquitoes.


Assuntos
Anopheles/genética , Antenas de Artrópodes/metabolismo , Genoma , Receptores Odorantes/genética , Transcriptoma , Animais , Evolução Molecular , Feminino , Humanos , Anotação de Sequência Molecular , Receptores Odorantes/metabolismo , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA