Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genome Res ; 34(3): 426-440, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38621828

RESUMO

Genome structural variations within species are rare. How selective constraints preserve gene order and chromosome structure is a central question in evolutionary biology that remains unsolved. Our sequencing of several genomes of the appendicularian tunicate Oikopleura dioica around the globe reveals extreme genome scrambling caused by thousands of chromosomal rearrangements, although showing no obvious morphological differences between these animals. The breakpoint accumulation rate is an order of magnitude higher than in ascidian tunicates, nematodes, Drosophila, or mammals. Chromosome arms and sex-specific regions appear to be the primary unit of macrosynteny conservation. At the microsyntenic level, scrambling did not preserve operon structures, suggesting an absence of selective pressure to maintain them. The uncoupling of the genome scrambling with morphological conservation in O. dioica suggests the presence of previously unnoticed cryptic species and provides a new biological system that challenges our previous vision of speciation in which similar animals always share similar genome structures.


Assuntos
Genoma , Urocordados , Animais , Urocordados/genética , Urocordados/classificação , Evolução Molecular , Feminino , Filogenia , Masculino , Sintenia
2.
Aquat Toxicol ; 267: 106825, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176169

RESUMO

Oil and gas industries in the Northern Atlantic Ocean have gradually moved closer to the Arctic areas, a process expected to be further facilitated by sea ice withdrawal caused by global warming. Copepods of the genus Calanus hold a key position in these cold-water food webs, providing an important energetic link between primary production and higher trophic levels. Due to their ecological importance, there is a concern about how accidental oil spills and produced water discharges may impact cold-water copepods. In this review, we summarize the current knowledge of the toxicity of petroleum on North Atlantic and Arctic Calanus copepods. We also review how recent development of high-quality transcriptomes from RNA-sequencing of copepods have identified genes regulating key biological processes, like molting, diapause and reproduction in Calanus copepods, to suggest linkages between exposure, molecular mechanisms and effects on higher levels of biological organization. We found that the available ecotoxicity threshold data for these copepods provide valuable information about their sensitivity to acute petrogenic exposures; however, there is still insufficient knowledge regarding underlying mechanisms of toxicity and the potential for long-term implications of relevance for copepod ecology and phenology. Copepod transcriptomics has expanded our understanding of how key biological processes are regulated in cold-water copepods. These advances can improve our understanding of how pollutants affect biological processes, and thus provide the basis for new knowledge frameworks spanning the effect continuum from molecular initiating events to adverse effects of regulatory relevance. Such efforts, guided by concepts such as adverse outcome pathways (AOPs), enable standardized and transparent characterization and evaluation of knowledge and identifies research gaps and priorities. This review suggests enhancing mechanistic understanding of exposure-effect relationships to better understand and link biomarker responses to adverse effects to improve risk assessments assessing ecological effects of pollutant mixtures, like crude oil, in Arctic areas.


Assuntos
Copépodes , Petróleo , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/toxicidade , Cadeia Alimentar , Água/farmacologia , Regiões Árticas , Petróleo/toxicidade , Petróleo/metabolismo
3.
Environ Pollut ; 335: 122284, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37543074

RESUMO

Marine sediments are regarded as sinks for several classes of contaminants. Characterization and effects of sediments on marine biota now require a multidisciplinary approach, which includes chemical and ecotoxicological analyses and molecular biomarkers. Here, a gene expression study was performed to measure the response of adult females of the Mediterranean copepod Acartia clausi to elutriates of polluted sediments (containing high concentrations of polycyclic aromatic hydrocarbons, PAHs, and heavy metals) from an industrial area in the Southern Tyrrhenian Sea (Bagnoli-Coroglio). Functional annotation of the A. clausi transcriptome generated as reference here, showed a good quality of the assembly and great homology with other copepod and crustacean sequences in public databases. This is one of the few available transcriptomic resources for this widespread copepod species of great ecological relevance in temperate coastal areas. Differential expression analysis between females exposed to the elutriate and those in control seawater identified 1000 differentially expressed genes, of which 743 up- and 257 down-regulated. Within the up-regulated genes, the most represented functions were related to proteolysis (lysosomal protease, peptidase, cathepsin), response to stress and detoxification (heat-shock protein, superoxide dismutase, glutathione-S-transferase, cytochrome P450), and cytoskeleton structure (α- and ß-tubulin). Down-regulated genes were mostly involved with ribosome structure (ribosomal proteins) and DNA binding (histone proteins, transcription factors). Overall, these results suggest that processes such as transcription, translation, protein degradation, metabolism of biomolecules, reproduction, and xenobiotic detoxification were altered in the copepod in response to polluted elutriates. In conclusion, our results contribute to gaining information on the transcriptomic responses of copepods to polluted sediments. They will also prompt the selection of genes of interest to be used as biomarkers of exposure to PAHs and heavy metals in molecular toxicology studies on copepods, and in general, in comparative functional genomic studies on marine zooplankton.


Assuntos
Copépodes , Metais Pesados , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Feminino , Copépodes/genética , Transcriptoma , Poluentes Químicos da Água/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Metais Pesados/análise , Sedimentos Geológicos/química
4.
Sci Data ; 10(1): 242, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37105953

RESUMO

This study presents eight new high-quality de novo transcriptomes from six co-occurring species of calanoid copepods, the first published for Neocalanus plumchrus, N. cristatus, Eucalanus bungii and Metridia pacifica and additional ones for N. flemingeri and Calanus marshallae. They are ecologically-important members of sub-arctic North Pacific marine zooplankton communities. 'Omics data for this diverse and numerous taxonomic group are sparse and difficult to obtain. Total RNA from single individuals was used to construct gene libraries that were sequenced on an Illumina Next-Seq platform. Quality filtered reads were assembled with Trinity software and validated using multiple criteria. The study's primary purpose is to provide a resource for gene expression studies. The integrated database can be used for quantitative inter- and intra-species comparisons of gene expression patterns across biological processes. An example of an additional use is provided for discovering novel and evolutionarily-significant proteins within the Calanoida. A workflow was designed to find and characterize unannotated transcripts with homologies across de novo assemblies that have also been shown to be eco-responsive.


Assuntos
Copépodes , Transcriptoma , Animais , Humanos , Sequência de Bases , Copépodes/genética
5.
Mar Drugs ; 20(11)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36355004

RESUMO

Living organisms deeply rely on the acquisition of chemical signals in any aspect of their life, from searching for food, mating and defending themselves from stressors. Copepods, the most abundant and ubiquitous metazoans on Earth, possess diversified and highly specified chemoreceptive structures along their body. The detection of chemical stimuli activates specific pathways, although this process has so far been analyzed only on a relatively limited number of species. Here, in silico mining of 18 publicly available transcriptomes is performed to delve into the copepod chemosensory genes, improving current knowledge on the diversity of this multigene family and on possible physiological mechanisms involved in the detection and analysis of chemical cues. Our study identifies the presence of ionotropic receptors, chemosensory proteins and gustatory receptors in copepods belonging to the Calanoida, Cyclopoida and Harpacticoida orders. We also confirm the absence in these copepods of odorant receptors and odorant-binding proteins agreeing with their insect specificity. Copepods have evolved several mechanisms to survive in the harsh marine environment such as producing proteins to respond to external stimulii. Overall, the results of our study open new possibilities for the use of the chemosensory genes as biomarkers in chemical ecology studies on copepods and possibly also in other marine holozooplankters.


Assuntos
Copépodes , Animais , Copépodes/genética , Copépodes/metabolismo , Antenas de Artrópodes/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Perfilação da Expressão Gênica , Transcriptoma/genética , Filogenia
6.
Mol Ecol ; 31(6): 1753-1765, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35048451

RESUMO

How individual organisms adapt to nonoptimal conditions through physiological acclimatization is central to predicting the consequences of unusual abiotic and biotic conditions such as those produced by marine heat waves. The Northeast Pacific, including the Gulf of Alaska, experienced an extreme warming event (2014-2016, "The Blob") that affected all trophic levels and led to large-scale changes in the community. The marine copepod Neocalanus flemingeri is a key member of the subarctic Pacific pelagic ecosystem. During the spring phytoplankton bloom this copepod builds substantial lipid stores as it prepares for its nonfeeding adult phase. A 3-year comparison of gene expression profiles of copepods collected in Prince William Sound in the Gulf of Alaska between 2015 and 2017 included two high-temperature years (2015 and 2016) and one year with very low phytoplankton abundances (2016). The largest differences in gene expression were between high and low chlorophyll years, and not between warm and cool years. The observed gene expression patterns were indicative of physiological acclimatization. The predominant signal in 2016 was the down-regulation of genes involved in glycolysis and its incoming pathways, consistent with the modulation of metabolic rates in response to prolonged low food conditions. Despite the down-regulation of genes involved in metabolism, there was no evidence of suppression of protein synthesis based on gene expression or behavioural activity. Genes involved in muscle function were up-regulated, and the copepods were actively swimming and responsive to stimuli at collection. However, genes involved in fatty acid metabolism were down-regulated in 2016, suggesting reduced lipid accumulation.


Assuntos
Copépodes , Zooplâncton , Aclimatação/genética , Animais , Copépodes/genética , Ecossistema , Fitoplâncton , Zooplâncton/genética
7.
Mar Drugs ; 19(11)2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34822518

RESUMO

Ovothiol is one of the most powerful antioxidants acting in marine organisms as a defense against oxidative stress during development and in response to environmental cues. The gene involved in the ovothiol biosynthesis, OvoA, is found in almost all metazoans, but open questions existed on its presence among arthropods. Here, using an in silico workflow, we report a single OvoA gene in marine arthropods including copepods, decapods, and amphipods. Phylogenetic analyses indicated that OvoA from marine arthropods separated from the other marine phyla (e.g., Porifera, Mollusca) and divided into two separate branches, suggesting a possible divergence through evolution. In the copepod Calanus finmarchicus, we suggest that OvoA has a defense role in oxidative stress as shown by its high expression in response to a toxic diet and during the copepodite stage, a developmental stage that includes significant morphological changes. Overall, the results of our study open possibilities for the use of OvoA as a biomarker of stress in copepods and possibly also for other marine holozooplankters. The finding of OvoA in copepods is also promising for the drug discovery field, suggesting the possibility of using copepods as a new source of bioactive compounds to be tested in the marine biotechnological sector.


Assuntos
Copépodes/genética , Animais , Organismos Aquáticos , Biomarcadores/metabolismo , Estresse Fisiológico
9.
BMC Genomics ; 22(1): 409, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34082716

RESUMO

BACKGROUND: Diapause is a seasonal dormancy that allows organisms to survive unfavorable conditions and optimizes the timing of reproduction and growth. Emergence from diapause reverses the state of arrested development and metabolic suppression returning the organism to an active state. The physiological mechanisms that regulate the transition from diapause to post-diapause are still unknown. In this study, this transition has been characterized for the sub-arctic calanoid copepod Neocalanus flemingeri, a key crustacean zooplankter that supports the highly productive North Pacific fisheries. Transcriptional profiling of females, determined over a two-week time series starting with diapausing females collected from > 400 m depth, characterized the molecular mechanisms that regulate the post-diapause trajectory. RESULTS: A complex set of transitions in relative gene expression defined the transcriptomic changes from diapause to post-diapause. Despite low temperatures (5-6 °C), the switch from a "diapause" to a "post-diapause" transcriptional profile occurred within 12 h of the termination stimulus. Transcriptional changes signaling the end of diapause were activated within one-hour post collection and included the up-regulation of genes involved in the 20E cascade pathway, the TCA cycle and RNA metabolism in combination with the down-regulation of genes associated with chromatin silencing. By 12 h, females exhibited a post-diapause phenotype characterized by the up-regulation of genes involved in cell division, cell differentiation and multiple developmental processes. By seven days post collection, the reproductive program was fully activated as indicated by up-regulation of genes involved in oogenesis and energy metabolism, processes that were enriched among the differentially expressed genes. CONCLUSIONS: The analysis revealed a finely structured, precisely orchestrated sequence of transcriptional changes that led to rapid changes in the activation of biological processes paving the way to the successful completion of the reproductive program. Our findings lead to new hypotheses related to potentially universal mechanisms that terminate diapause before an organism can resume its developmental program.


Assuntos
Copépodes , Diapausa , Animais , Regiões Árticas , Copépodes/genética , Diapausa/genética , Feminino , Reprodução/genética , Transcriptoma
10.
Commun Biol ; 4(1): 426, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33782539

RESUMO

Many arthropods undergo a seasonal dormancy termed "diapause" to optimize timing of reproduction in highly seasonal environments. In the North Atlantic, the copepod Calanus finmarchicus completes one to three generations annually with some individuals maturing into adults, while others interrupt their development to enter diapause. It is unknown which, why and when individuals enter the diapause program. Transcriptomic data from copepods on known programs were analyzed using dimensionality reduction of gene expression and functional analyses to identify program-specific genes and biological processes. These analyses elucidated physiological differences and established protocols that distinguish between programs. Differences in gene expression were associated with maturation of individuals on the reproductive program, while those on the diapause program showed little change over time. Only two of six filters effectively separated copepods by developmental program. The first one included all genes annotated to RNA metabolism and this was confirmed using differential gene expression analysis. The second filter identified 54 differentially expressed genes that were consistently up-regulated in individuals on the diapause program in comparison with those on the reproductive program. Annotated to oogenesis, RNA metabolism and fatty acid biosynthesis, these genes are both indicators for diapause preparation and good candidates for functional studies.


Assuntos
Copépodes/fisiologia , Diapausa/genética , Transcriptoma/fisiologia , Animais , Copépodes/genética , Fenótipo , Reprodução/genética
11.
Biology (Basel) ; 9(11)2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33266516

RESUMO

Antarctic waters are the largest almost untapped diversified resource of our planet. Molecular resources for Antarctic organisms are very limited and mostly represented by sequences used for species genotyping. In this study, we present the first transcriptome for the copepod Rhincalanus gigas, one of the predominant zooplankton species of Antarctic waters. This transcriptome represents also the first molecular resource for an eucalanoid copepod. The transcriptome is of high quality and completeness. The presence of three predicted genes encoding antifreeze proteins and gene duplication within the glutathione metabolism pathway are suggested as possible adaptations to cope with this harsh environment. The R. gigas transcriptome represents a powerful new resource for investigating the molecular basis associated with polar biological processes and ecology.

12.
Mar Genomics ; 51: 100723, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31784353

RESUMO

High-throughput RNA sequencing (RNA-Seq) has transformed the ecophysiological assessment of individual plankton species and communities. However, the technology generates complex data consisting of millions of short-read sequences that can be difficult to analyze and interpret. New bioinformatics workflows are needed to guide experimentation, environmental sampling, and to develop and test hypotheses. One complexity-reducing tool that has been used successfully in other fields is "t-distributed Stochastic Neighbor Embedding" (t-SNE). Its application to transcriptomic data from marine pelagic and benthic systems has yet to be explored. The present study demonstrates an application for evaluating RNA-Seq data using previously published, conventionally analyzed studies on the copepods Calanus finmarchicus and Neocalanus flemingeri. In one application, gene expression profiles were compared among different developmental stages. In another, they were compared among experimental conditions. In a third, they were compared among environmental samples from different locations. The profile categories identified by t-SNE were validated by reference to published results using differential gene expression and Gene Ontology (GO) analyses. The analyses demonstrate how individual samples can be evaluated for differences in global gene expression, as well as differences in expression related to specific biological processes, such as lipid metabolism and responses to stress. As RNA-Seq data from plankton species and communities become more common, t-SNE analysis should provide a powerful tool for determining trends and classifying samples into groups with similar transcriptional physiology, independent of collection site or time.


Assuntos
Copépodes/genética , Perfilação da Expressão Gênica/métodos , Animais , Feminino , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Larva/genética , RNA-Seq , Especificidade da Espécie , Processos Estocásticos , Transcriptoma
13.
Biol Bull ; 237(2): 170-179, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31714852

RESUMO

Post-embryonic diapause in copepods is an adaptation that allows species in the copepod family Calanidae to thrive in high-latitude environments by transforming a short spring phytoplankton bloom into large numbers of lipid-rich individuals capable of surviving a long period of starvation. The copepods, with their high-energy lipid reservoirs, are a critical food source for higher trophic levels, making the Calanidae a key component of high-latitude marine ecosystems. The physiological ecology of the developmental program remains poorly understood. However, new studies using high-throughput RNA sequencing approaches are giving detailed access to physiological status by generating gene expression profiles for both field-collected and laboratory-incubated individuals. These are beginning to characterize the diapause phenotype, elucidate the transcriptional and physiological progression through the diapause program, and illustrate the effects of organism-environment interactions. This paper reviews gene expression profiling studies on the life cycle and diapause program of Neocalanus flemingeri Miller (1988) that were conducted as part of a long-term observation program in the northern Gulf of Alaska. It summarizes recent findings and relates them to the ecology of this species and to that of other calanids.


Assuntos
Copépodes , Diapausa , Animais , Ecossistema , Fitoplâncton , Transcriptoma
14.
Commun Biol ; 2: 324, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31482143

RESUMO

Marine pelagic species are being increasingly challenged by environmental change. Their ability to persist will depend on their capacity for physiological acclimatization. Little is known about limits of physiological plasticity in key species at the base of the food web. Here we investigate the capacity for acclimatization in the copepod Neocalanus flemingeri, which inhabits the Gulf of Alaska, a heterogeneous and highly seasonal environment. RNA-Seq analysis of field-collected pre-adults identified large regional differences in expression of genes involved in metabolic and developmental processes and response to stressors. We found that lipid synthesis genes were up-regulated in individuals from Prince William Sound and down-regulated in the Gulf of Alaska. Up-regulation of lipid catabolic genes in offshore individuals suggests they are experiencing nutritional deficits. The expression differences demonstrate physiological plasticity in response to a steep gradient in food availability. Our transcriptional analysis reveals mechanisms of acclimatization that likely contribute to the observed resilience of this population.


Assuntos
Copépodes/genética , Regulação da Expressão Gênica , Zooplâncton/genética , Alaska , Animais , Regiões Árticas , Clorofila A/metabolismo , Análise por Conglomerados , Ontologia Genética , Metabolismo dos Lipídeos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Salinidade , Temperatura
15.
Elife ; 72018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30322446

RESUMO

Elephants and fruit bats have evolved large brains even though they have lost a gene that is fundamental to the supply of energy to the brain when glucose is not available.


Assuntos
Evolução Biológica , Encéfalo/anatomia & histologia , Genes , Animais , Humanos , Tamanho do Órgão/genética
16.
Commun Biol ; 1: 121, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30272001

RESUMO

Investigating environmental hazards than could affect appendicularians is of prime ecological interest because they are among the most abundant components of the mesozooplankton. This work shows that embryo development of the appendicularian Oikopleura dioica is compromised by diatom bloom-derived biotoxins, even at concentrations in the same range as those measured after blooms. Developmental gene expression analysis of biotoxin-treated embryos uncovers an aberrant golf ball-like phenotype affecting morphogenesis, midline convergence, and tail elongation. Biotoxins induce a rapid upregulation of defensome genes, and considerable delay and silencing of zygotic transcription of developmental genes. Upon a possible future intensification of blooms associated with ocean warming and acidification, our work puts an alert on the potential impact that an increase of biotoxins may have on marine food webs, and points to defensome genes as molecular biosensors that marine ecologists could use to monitor the genetic stress of natural populations exposed to microalgal blooms.

17.
Sci Rep ; 8(1): 12577, 2018 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-30135598

RESUMO

Organisms inhabiting high-latitude environments have evolved adaptations, such as diapause to time reproduction and growth to optimize their survival. However, the physiological regulation of the timing of complex life histories is poorly understood, particularly for marine copepods, that diapause at depth. A member of the pelagic community of the sub-Arctic Pacific Ocean, Neocalanus flemingeri enters diapause in June. Egg production occurs in winter/spring. In order to characterize the transition from diapause to egg release, females were collected in late September from 400-700 m depth, incubated in the dark at 4-5 °C and sampled for RNASeq at weekly intervals. The diapause phenotype showed down-regulation of protein turnover and up-regulation of stress genes. Activation of the reproductive program was marked by the up-regulation of genes involved in germline development. Thereafter, progress through phases of oocyte development could be linked to changes in gene expression. At 5 weeks, females showed up-regulation of spermatogenesis, indicating that stored sperm had been in a quiescent stage and completed their maturation inside the female. Gene expression profiles provide a framework to stage field-collected females. The 7-week progression from diapause to late oogenesis suggests that females typically spawning in January initiated the reproductive program in November.


Assuntos
Copépodes/genética , Copépodes/fisiologia , Diapausa/genética , Perfilação da Expressão Gênica , Animais , Feminino , Masculino , Anotação de Sequência Molecular , Óvulo/crescimento & desenvolvimento , Fenótipo , Reprodução/genética , Espermatozoides/citologia
18.
Mar Genomics ; 41: 19-30, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30031746

RESUMO

Whether cardiac output in decapod crustaceans is under circadian control has long been debated, with mixed evidence for and against the hypothesis. Moreover, the locus of the clock system controlling cardiac activity, if it is under circadian control, is unknown. However, a report that the crayfish heart in organ culture maintains a circadian oscillation in heartbeat frequency suggests the presence of a peripheral pacemaker within the cardiac neuromuscular system itself. Because the decapod heart is neurogenic, with contractions controlled by the five motor and four premotor neurons that make up the cardiac ganglion (CG), a likely locus for a circadian clock is the CG itself. Here, a CG-specific transcriptome was generated for the lobster, Homarus americanus, and was used to assess the presence/absence of transcripts encoding putative clock-related proteins in the ganglion. Using known Homarus brain/eyestalk ganglia clock-related proteins as queries, BLAST searches of the CG transcriptome were conducted for the five proteins that form the core clock, i.e., clock, cryptochrome 2, cycle, period and timeless, as well as for a variety of clock-associated, clock input pathway and clock output pathway proteins. With the exception of pigment dispersing hormone receptor [PDHR], a putative clock output pathway protein, one or more transcripts encoding each of the proteins searched for were identified from the CG assembly; no PDHR-encoding transcripts were found. RT-PCR confirmed the expression of all core clock transcripts in multiple independent CG cDNAs; RNA-Seq data suggest that both the motor and premotor neurons could contribute to the cellular locus of a pacemaker. These data provide support for the possible existence of an intrinsic circadian clock in the H. americanus CG, and form a foundation for guiding future anatomical, molecular and physiological investigations of circadian signaling in the lobster cardiac neuromuscular system.


Assuntos
Relógios Circadianos/genética , Nephropidae/genética , Animais , Proteínas CLOCK/genética , Gânglios/fisiologia , Nephropidae/fisiologia , Transcriptoma
19.
Mar Genomics ; 40: 25-44, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29655930

RESUMO

Essentially all organisms exhibit recurring patterns of physiology/behavior that oscillate with a period of ~24-h and are synchronized to the solar day. Crustaceans are no exception, with robust circadian rhythms having been documented in many members of this arthropod subphylum. However, little is known about the molecular underpinnings of their circadian rhythmicity. Moreover, the location of the crustacean central clock has not been firmly established, although both the brain and eyestalk ganglia have been hypothesized as loci. The American lobster, Homarus americanus, is known to exhibit multiple circadian rhythms, and immunodetection data suggest that its central clock is located within the eyestalk ganglia rather than in the brain. Here, brain- and eyestalk ganglia-specific transcriptomes were generated and used to assess the presence/absence of transcripts encoding the commonly recognized protein components of arthropod circadian signaling systems in these two regions of the lobster central nervous system. Transcripts encoding putative homologs of the core clock proteins clock, cryptochrome 2, cycle, period and timeless were found in both the brain and eyestalk ganglia assemblies, as were transcripts encoding similar complements of putative clock-associated, clock input pathway and clock output pathway proteins. The presence and identity of transcripts encoding core clock proteins in both regions were confirmed using PCR. These findings suggest that both the brain and eyestalk ganglia possess all of the molecular components needed for the establishment of a circadian signaling system. Whether the brain and eyestalk clocks are independent of one another or represent a single timekeeping system remains to be determined. Interestingly, while most of the proteins deduced from the identified transcripts are shared by both the brain and eyestalk ganglia, assembly-specific isoforms were also identified, e.g., several period variants, suggesting the possibility of region-specific variation in clock function, especially if the brain and eyestalk clocks represent independent oscillators.


Assuntos
Encéfalo/fisiologia , Proteínas CLOCK/fisiologia , Ritmo Circadiano/fisiologia , Gânglios/fisiologia , Nephropidae/fisiologia , Transcriptoma , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/fisiologia , Alinhamento de Sequência
20.
Mar Genomics ; 38: 67-88, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29395622

RESUMO

Due to its sensitivity to many environmental and anthropogenic stressors, including a wide range of chemical compounds, Hyalella azteca, a freshwater amphipod, has emerged as one of the most commonly used invertebrates for ecotoxicological assessment.Peptidergic signaling systems are key components in the control of organism-environment interactions, and there is a growing literature suggesting that they are targets of a number of aquatic toxicants.Interestingly, and despite its model species status in the field of ecotoxicology, little is known about the peptide hormones of H. azteca.Here, a transcriptome was produced for this species using the de novo assembler Trinity and mined for sequences encoding putative peptide precursors; the transcriptome was assembled from 460,291,636 raw reads and consists of 133,486 unique transcripts.Seventy-six sequences encoding peptide pre/preprohormones were identified from this transcriptome, allowing for the prediction of 202 distinct peptides, which included members of the allatostatin A, allatostatin B, allatostatin C, allatotropin, bursicon, CCHamide, corazonin, crustacean cardioactive peptide, crustacean hyperglycemic hormone/molt-inhibiting hormone, ecdysis-triggering hormone, eclosion hormone, elevenin, FMRFamide-like peptide, glycoprotein hormone, GSEFLamide, inotocin, leucokinin, myosuppressin, neuropeptide F, orcokinin, orcomyotropin, pigment dispersing hormone, proctolin, pyrokinin, red pigment concentrating hormone, RYamide, short neuropeptide F, SIFamide, sulfakinin, tachykinin-related peptide and trissin families.These peptides expand the known peptidome for H. azteca approximately nine-fold, forming a strong foundation for future studies of peptidergic control, including disruption by aquatic toxicants, in this important ecotoxicological model.


Assuntos
Anfípodes/genética , Proteínas de Artrópodes/genética , Peptídeos/genética , Transcriptoma , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA