Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(23): e2304666120, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37252962

RESUMO

Nonlinear stiffening is a ubiquitous property of major types of biopolymers that make up the extracellular matrices (ECM) including collagen, fibrin, and basement membrane. Within the ECM, many types of cells such as fibroblasts and cancer cells have a spindle-like shape that acts like two equal and opposite force monopoles, which anisotropically stretch their surroundings and locally stiffen the matrix. Here, we first use optical tweezers to study the nonlinear force-displacement response to localized monopole forces. We then propose an effective-probe scaling argument that a local point force application can induce a stiffened region in the matrix, which can be characterized by a nonlinear length scale R* that increases with the increasing force magnitude; the local nonlinear force-displacement response is a result of the nonlinear growth of this effective probe that linearly deforms an increasing portion of the surrounding matrix. Furthermore, we show that this emerging nonlinear length scale R* can be observed around living cells and can be perturbed by varying matrix concentration or inhibiting cell contractility.


Assuntos
Colágeno , Matriz Extracelular , Elasticidade , Biopolímeros , Fibrina
2.
Nature ; 604(7904): 46-47, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379991
3.
Phys Rev Lett ; 128(3): 038102, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35119898

RESUMO

Multivalent associative proteins with strong complementary interactions play a crucial role in phase separation of intracellular liquid condensates. We study the internal dynamics of such "bond-network" condensates comprising two complementary proteins via scaling analysis and molecular dynamics. We find that when stoichiometry is balanced, relaxation slows down dramatically due to a scarcity of alternative binding partners following bond breakage. This microscopic slow-down strongly affects the bulk diffusivity, viscosity, and mixing, which provides a means to experimentally test this prediction.


Assuntos
Modelos Químicos , Proteínas , Fenômenos Biofísicos , Simulação de Dinâmica Molecular , Viscosidade
4.
Nature ; 599(7885): 503-506, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34552246

RESUMO

All structures within living cells must form at the right time and place. This includes condensates such as the nucleolus, Cajal bodies and stress granules, which form via liquid-liquid phase separation of biomolecules, particularly proteins enriched in intrinsically disordered regions (IDRs)1,2. In non-living systems, the initial stages of nucleated phase separation arise when thermal fluctuations overcome an energy barrier due to surface tension. This phenomenon can be modelled by classical nucleation theory (CNT), which describes how the rate of droplet nucleation depends on the degree of supersaturation, whereas the location at which droplets appear is controlled by interfacial heterogeneities3,4. However, it remains unknown whether this framework applies in living cells, owing to the multicomponent and highly complex nature of the intracellular environment, including the presence of diverse IDRs, whose specificity of biomolecular interactions is unclear5-8. Here we show that despite this complexity, nucleation in living cells occurs through a physical process similar to that in inanimate materials, but the efficacy of nucleation sites can be tuned by their biomolecular features. By quantitatively characterizing the nucleation kinetics of endogenous and biomimetic condensates in living cells, we find that key features of condensate nucleation can be quantitatively understood through a CNT-like theoretical framework. Nucleation rates can be substantially enhanced by compatible biomolecular (IDR) seeds, and the kinetics of cellular processes can impact condensate nucleation rates and specificity of location. This quantitative framework sheds light on the intracellular nucleation landscape, and paves the way for engineering synthetic condensates precisely positioned in space and time.


Assuntos
Condensados Biomoleculares/química , Linhagem Celular Tumoral , Feminino , Humanos , Cinética , Termodinâmica
5.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34140336

RESUMO

Cells are the basic units of all living matter which harness the flow of energy to drive the processes of life. While the biochemical networks involved in energy transduction are well-characterized, the energetic costs and constraints for specific cellular processes remain largely unknown. In particular, what are the energy budgets of cells? What are the constraints and limits energy flows impose on cellular processes? Do cells operate near these limits, and if so how do energetic constraints impact cellular functions? Physics has provided many tools to study nonequilibrium systems and to define physical limits, but applying these tools to cell biology remains a challenge. Physical bioenergetics, which resides at the interface of nonequilibrium physics, energy metabolism, and cell biology, seeks to understand how much energy cells are using, how they partition this energy between different cellular processes, and the associated energetic constraints. Here we review recent advances and discuss open questions and challenges in physical bioenergetics.


Assuntos
Células/metabolismo , Metabolismo Energético , Fenômenos Físicos
6.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33579821

RESUMO

The migratory dynamics of cells in physiological processes, ranging from wound healing to cancer metastasis, rely on contact-mediated cell-cell interactions. These interactions play a key role in shaping the stochastic trajectories of migrating cells. While data-driven physical formalisms for the stochastic migration dynamics of single cells have been developed, such a framework for the behavioral dynamics of interacting cells still remains elusive. Here, we monitor stochastic cell trajectories in a minimal experimental cell collider: a dumbbell-shaped micropattern on which pairs of cells perform repeated cellular collisions. We observe different characteristic behaviors, including cells reversing, following, and sliding past each other upon collision. Capitalizing on this large experimental dataset of coupled cell trajectories, we infer an interacting stochastic equation of motion that accurately predicts the observed interaction behaviors. Our approach reveals that interacting noncancerous MCF10A cells can be described by repulsion and friction interactions. In contrast, cancerous MDA-MB-231 cells exhibit attraction and antifriction interactions, promoting the predominant relative sliding behavior observed for these cells. Based on these experimentally inferred interactions, we show how this framework may generalize to provide a unifying theoretical description of the diverse cellular interaction behaviors of distinct cell types.


Assuntos
Comunicação Celular , Movimento Celular , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Modelos Teóricos , Análise Espaço-Temporal , Processos Estocásticos
7.
Nat Commun ; 11(1): 5378, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-33097699

RESUMO

Time-lapse microscopy imaging provides direct access to the dynamics of soft and living systems. At mesoscopic scales, such microscopy experiments reveal intrinsic thermal and non-equilibrium fluctuations. These fluctuations, together with measurement noise, pose a challenge for the dynamical analysis of these Brownian movies. Traditionally, methods to analyze such experimental data rely on tracking embedded or endogenous probes. However, it is in general unclear, especially in complex many-body systems, which degrees of freedom are the most informative about their non-equilibrium nature. Here, we introduce an alternative, tracking-free approach that overcomes these difficulties via an unsupervised analysis of the Brownian movie. We develop a dimensional reduction scheme selecting a basis of modes based on dissipation. Subsequently, we learn the non-equilibrium dynamics, thereby estimating the entropy production rate and time-resolved force maps. After benchmarking our method against a minimal model, we illustrate its broader applicability with an example inspired by active biopolymer gels.

8.
Phys Rev Lett ; 125(5): 058103, 2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32794851

RESUMO

Many complex systems, ranging from migrating cells to animal groups, exhibit stochastic dynamics described by the underdamped Langevin equation. Inferring such an equation of motion from experimental data can provide profound insight into the physical laws governing the system. Here, we derive a principled framework to infer the dynamics of underdamped stochastic systems from realistic experimental trajectories, sampled at discrete times and subject to measurement errors. This framework yields an operational method, Underdamped Langevin Inference, which performs well on experimental trajectories of single migrating cells and in complex high-dimensional systems, including flocks with Viscek-like alignment interactions. Our method is robust to experimental measurement errors, and includes a self-consistent estimate of the inference error.


Assuntos
Modelos Teóricos , Movimento , Animais , Comportamento Animal/fisiologia , Movimento Celular/fisiologia , Poeira , Modelos Biológicos , Modelos Químicos , Movimento/fisiologia , Dinâmica não Linear , Densidade Demográfica
9.
Nat Commun ; 11(1): 1561, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32214099

RESUMO

Cells possess non-membrane-bound bodies, many of which are now understood as phase-separated condensates. One class of such condensates is composed of two polymer species, where each consists of repeated binding sites that interact in a one-to-one fashion with the binding sites of the other polymer. Biologically-motivated modeling revealed that phase separation is suppressed by a "magic-number effect" which occurs if the two polymers can form fully-bonded small oligomers by virtue of the number of binding sites in one polymer being an integer multiple of the number of binding sites of the other. Here we use lattice-model simulations and analytical calculations to show that this magic-number effect can be greatly enhanced if one of the polymer species has a rigid shape that allows for multiple distinct bonding conformations. Moreover, if one species is rigid, the effect is robust over a much greater range of relative concentrations of the two species.


Assuntos
Biopolímeros/química , Sítios de Ligação , Fenômenos Biofísicos , Biopolímeros/metabolismo , Modelos Moleculares , Conformação Molecular , Transição de Fase , Ligação Proteica
10.
Phys Rev E ; 100(5-1): 052150, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31869895

RESUMO

The concept of geometrical frustration in condensed matter physics refers to the fact that a system has a locally preferred structure with an energy density lower than the infinite ground state. This notion is, however, often used in a qualitative sense only. In this article, we discuss a quantitative definition of geometrical frustration in the context of lattice models of binary spins. To this aim, we introduce the framework of local energy landscapes, within which frustration can be quantified as the discrepancy between the energy of locally preferred structures and the ground state. Our definition is scale dependent and involves an optimization over a gauge class of equivalent local energy landscapes, related to one another by local energy displacements. This ensures that frustration depends only on the physical Hamiltonian and its range, and not on unphysical choices in how it is written. Our framework shows that a number of popular frustrated models, including the antiferromagnetic Ising model on a triangular lattice, only have finite-range frustration: geometrical incompatibilities are local and can be eliminated by an exact coarse graining of the local energies.

12.
Soft Matter ; 15(7): 1481-1487, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30608098

RESUMO

The mechanical properties of the cell depend crucially on the tension of its cytoskeleton, a biopolymer network that is put under stress by active motor proteins. While the fibrous nature of the network is known to strongly affect the transmission of these forces to the cellular scale, our understanding of this process remains incomplete. Here we investigate the transmission of forces through the network at the individual filament level, and show that active forces can be geometrically amplified as a transverse motor-generated force "plucks" the fiber and induces a nonlinear tension. In stiff and densely connected networks, this tension results in large network-wide tensile stresses that far exceed the expectation drawn from a linear elastic theory. This amplification mechanism competes with a recently characterized network-level amplification due to fiber buckling, suggesting that that fiber networks provide several distinct pathways for living systems to amplify their molecular forces.

13.
Soft Matter ; 15(2): 331-338, 2019 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-30556571

RESUMO

The production of mechanical stresses in living organisms largely relies on localized, force-generating active units embedded in filamentous matrices. Numerical simulations of discrete fiber networks with fixed boundaries have shown that buckling in the matrix dramatically amplifies the resulting active stresses. Here we extend this result to a continuum elastic medium prone to buckling subjected to an arbitrary external stress, and derive analytical expressions for the active, nonlinear constitutive relations characterizing the full active medium. Inserting these relations into popular "active gel" descriptions of living tissues and the cytoskeleton will enable investigations into nonlinear regimes previously inaccessible due to the phenomenological nature of these theories.

14.
Cell ; 175(6): 1481-1491.e13, 2018 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30500535

RESUMO

Phase transitions involving biomolecular liquids are a fundamental mechanism underlying intracellular organization. In the cell nucleus, liquid-liquid phase separation of intrinsically disordered proteins (IDPs) is implicated in assembly of the nucleolus, as well as transcriptional clusters, and other nuclear bodies. However, it remains unclear whether and how physical forces associated with nucleation, growth, and wetting of liquid condensates can directly restructure chromatin. Here, we use CasDrop, a novel CRISPR-Cas9-based optogenetic technology, to show that various IDPs phase separate into liquid condensates that mechanically exclude chromatin as they grow and preferentially form in low-density, largely euchromatic regions. A minimal physical model explains how this stiffness sensitivity arises from lower mechanical energy associated with deforming softer genomic regions. Targeted genomic loci can nonetheless be mechanically pulled together through surface tension-driven coalescence. Nuclear condensates may thus function as mechano-active chromatin filters, physically pulling in targeted genomic loci while pushing out non-targeted regions of the neighboring genome. VIDEO ABSTRACT.


Assuntos
Nucléolo Celular/metabolismo , Cromatina/metabolismo , Citoplasma/metabolismo , Genoma Humano , Proteínas Intrinsicamente Desordenadas/metabolismo , Transição de Fase , Animais , Linhagem Celular Tumoral , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Células NIH 3T3
15.
J Chem Phys ; 148(20): 204511, 2018 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-29865800

RESUMO

We study the joint variability of structural information in a hard sphere fluid biased to avoid crystallisation and form five-fold symmetric geometric motifs. We show that the structural covariance matrix approach, originally proposed for on-lattice liquids [P. Ronceray and P. Harrowell, J. Stat. Mech.: Theory Exp. 2016(8), 084002], can be meaningfully employed to understand structural relationships between different motifs and can predict, within the linear-response regime, structural changes related to motifs distinct from that used to bias the system.

16.
Proc Natl Acad Sci U S A ; 115(16): 4075-4080, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29618614

RESUMO

Animal cells in tissues are supported by biopolymer matrices, which typically exhibit highly nonlinear mechanical properties. While the linear elasticity of the matrix can significantly impact cell mechanics and functionality, it remains largely unknown how cells, in turn, affect the nonlinear mechanics of their surrounding matrix. Here, we show that living contractile cells are able to generate a massive stiffness gradient in three distinct 3D extracellular matrix model systems: collagen, fibrin, and Matrigel. We decipher this remarkable behavior by introducing nonlinear stress inference microscopy (NSIM), a technique to infer stress fields in a 3D matrix from nonlinear microrheology measurements with optical tweezers. Using NSIM and simulations, we reveal large long-ranged cell-generated stresses capable of buckling filaments in the matrix. These stresses give rise to the large spatial extent of the observed cell-induced matrix stiffness gradient, which can provide a mechanism for mechanical communication between cells.


Assuntos
Forma Celular , Proteínas da Matriz Extracelular/química , Matriz Extracelular/ultraestrutura , Técnicas de Cultura de Células/instrumentação , Linhagem Celular , Linhagem Celular Tumoral , Colágeno/química , Simulação por Computador , Citocalasina D/farmacologia , Combinação de Medicamentos , Elasticidade , Células Epiteliais/fisiologia , Células Epiteliais/ultraestrutura , Matriz Extracelular/química , Fibrina/química , Humanos , Laminina/química , Modelos Biológicos , Movimento (Física) , Pinças Ópticas , Proteoglicanas/química , Reologia/métodos , Estresse Mecânico
17.
Cell ; 171(1): 148-162.e19, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28938114

RESUMO

Approximately 30%-40% of global CO2 fixation occurs inside a non-membrane-bound organelle called the pyrenoid, which is found within the chloroplasts of most eukaryotic algae. The pyrenoid matrix is densely packed with the CO2-fixing enzyme Rubisco and is thought to be a crystalline or amorphous solid. Here, we show that the pyrenoid matrix of the unicellular alga Chlamydomonas reinhardtii is not crystalline but behaves as a liquid that dissolves and condenses during cell division. Furthermore, we show that new pyrenoids are formed both by fission and de novo assembly. Our modeling predicts the existence of a "magic number" effect associated with special, highly stable heterocomplexes that influences phase separation in liquid-like organelles. This view of the pyrenoid matrix as a phase-separated compartment provides a paradigm for understanding its structure, biogenesis, and regulation. More broadly, our findings expand our understanding of the principles that govern the architecture and inheritance of liquid-like organelles.


Assuntos
Chlamydomonas reinhardtii/citologia , Cloroplastos/ultraestrutura , Proteínas de Algas/metabolismo , Dióxido de Carbono/metabolismo , Chlamydomonas reinhardtii/química , Chlamydomonas reinhardtii/metabolismo , Cloroplastos/química , Cloroplastos/metabolismo , Microscopia Crioeletrônica , Biogênese de Organelas , Ribulose-Bifosfato Carboxilase/metabolismo
18.
Phys Rev E ; 96(4-1): 042602, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29347620

RESUMO

We propose a geometrical characterization of amorphous liquid structures that suppress crystallization by competing locally with crystalline order. We introduce for this purpose the crystal affinity of a liquid, a simple measure of its propensity to accumulate local crystalline structures on cooling. This quantity is explicitly related to the high-temperature structural covariance between local fluctuations in crystal order and that of competing liquid structures: favoring a structure that, due to poor overlap properties, anticorrelates with crystalline order reduces the affinity of the liquid. Using a lattice model of a liquid, we show that this quantity successfully predicts the tendency of a liquid to either accumulate or suppress local crystalline fluctuations with increasing supercooling. We demonstrate that the crystal affinity correlates strongly with the crystal nucleation rate and the crystal-liquid interfacial free energy of the low-temperature liquid, making our theory a predictive tool to determine which amorphous structures enhance glass-forming ability.

19.
Proc Natl Acad Sci U S A ; 113(11): 2827-32, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26921325

RESUMO

Large-scale force generation is essential for biological functions such as cell motility, embryonic development, and muscle contraction. In these processes, forces generated at the molecular level by motor proteins are transmitted by disordered fiber networks, resulting in large-scale active stresses. Although these fiber networks are well characterized macroscopically, this stress generation by microscopic active units is not well understood. Here we theoretically study force transmission in these networks. We find that collective fiber buckling in the vicinity of a local active unit results in a rectification of stress towards strongly amplified isotropic contraction. This stress amplification is reinforced by the networks' disordered nature, but saturates for high densities of active units. Our predictions are quantitatively consistent with experiments on reconstituted tissues and actomyosin networks and shed light on the role of the network microstructure in shaping active stresses in cells and tissue.


Assuntos
Tecido Elástico/fisiologia , Modelos Biológicos , Estresse Fisiológico , Citoesqueleto de Actina/química , Citoesqueleto de Actina/fisiologia , Actomiosina/química , Coagulação Sanguínea , Plaquetas/fisiologia , Citoesqueleto/fisiologia , Humanos , Microscopia de Força Atômica
20.
Soft Matter ; 11(17): 3322-31, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25773665

RESUMO

We investigate the connection between the geometry of Favoured Local Structures (FLS) in liquids and the associated liquid and solid properties. We introduce a lattice spin model - the FLS model on a face-centered cubic lattice - where this geometry can be arbitrarily chosen among a discrete set of 115 possible FLS. We find crystalline groundstates for all choices of a single FLS. Sampling all possible FLS's, we identify the following trends: (i) low symmetry FLS's produce larger crystal unit cells but not necessarily higher energy groundstates, (ii) chiral FLS's exhibit peculiarly poor packing properties, (iii) accumulation of FLS's in supercooled liquids is linked to large crystal unit cells, and (iv) low symmetry FLS's tend to find metastable structures on cooling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA