Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Protoc ; 19(3): 752-790, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38216671

RESUMO

Clustered regularly interspaced short palindromic repeats (CRISPR)-associated transposases have the potential to transform the technology landscape for kilobase-scale genome engineering, by virtue of their ability to integrate large genetic payloads with high accuracy, easy programmability and no requirement for homologous recombination machinery. These transposons encode efficient, CRISPR RNA-guided transposases that execute genomic insertions in Escherichia coli at efficiencies approaching ~100%. Moreover, they generate multiplexed edits when programmed with multiple guides, and function robustly in diverse Gram-negative bacterial species. Here we present a detailed protocol for engineering bacterial genomes using CRISPR-associated transposase (CAST) systems, including guidelines on the available vectors, customization of guide RNAs and DNA payloads, selection of common delivery methods, and genotypic analysis of integration events. We further describe a computational CRISPR RNA design algorithm to avoid potential off-targets, and a CRISPR array cloning pipeline for performing multiplexed DNA insertions. The method presented here allows the isolation of clonal strains containing a novel genomic integration event of interest within 1-2 weeks using available plasmid constructs and standard molecular biology techniques.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Transposases , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Transposases/genética , RNA Guia de Sistemas CRISPR-Cas , Genoma Bacteriano , DNA , Escherichia coli/genética , Sistemas CRISPR-Cas/genética , Engenharia Genética/métodos , Edição de Genes
2.
Immunity ; 56(12): 2719-2735.e7, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38039966

RESUMO

Commensal microbes induce cytokine-producing effector tissue-resident CD4+ T cells, but the function of these T cells in mucosal homeostasis is not well understood. Here, we report that commensal-specific intestinal Th17 cells possess an anti-inflammatory phenotype marked by expression of interleukin (IL)-10 and co-inhibitory receptors. The anti-inflammatory phenotype of gut-resident commensal-specific Th17 cells was driven by the transcription factor c-MAF. IL-10-producing commensal-specific Th17 cells were heterogeneous and derived from a TCF1+ gut-resident progenitor Th17 cell population. Th17 cells acquired IL-10 expression and anti-inflammatory phenotype in the small-intestinal lamina propria. IL-10 production by CD4+ T cells and IL-10 signaling in intestinal macrophages drove IL-10 expression by commensal-specific Th17 cells. Intestinal commensal-specific Th17 cells possessed immunoregulatory functions and curbed effector T cell activity in vitro and in vivo in an IL-10-dependent and c-MAF-dependent manner. Our results suggest that tissue-resident commensal-specific Th17 cells perform regulatory functions in mucosal homeostasis.


Assuntos
Microbioma Gastrointestinal , Células Th17 , Interleucina-10/metabolismo , Mucosa Intestinal/metabolismo , Anti-Inflamatórios
3.
bioRxiv ; 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36993567

RESUMO

CRISPR-associated transposons (CASTs) have the potential to transform the technology landscape for kilobase-scale genome engineering, by virtue of their ability to integrate large genetic payloads with high accuracy, easy programmability, and no requirement for homologous recombination machinery. These transposons encode efficient, CRISPR RNA-guided transposases that execute genomic insertions in E. coli at efficiencies approaching ~100%, generate multiplexed edits when programmed with multiple guides, and function robustly in diverse Gram-negative bacterial species. Here we present a detailed protocol for engineering bacterial genomes using CAST systems, including guidelines on the available homologs and vectors, customization of guide RNAs and DNA payloads, selection of common delivery methods, and genotypic analysis of integration events. We further describe a computational crRNA design algorithm to avoid potential off-targets and CRISPR array cloning pipeline for DNA insertion multiplexing. Starting from available plasmid constructs, the isolation of clonal strains containing a novel genomic integration event-of-interest can be achieved in 1 week using standard molecular biology techniques.

4.
Nat Biotechnol ; 41(10): 1424-1433, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36805559

RESUMO

Pure bacterial cultures remain essential for detailed experimental and mechanistic studies in microbiome research, and traditional methods to isolate individual bacteria from complex microbial ecosystems are labor-intensive, difficult-to-scale and lack phenotype-genotype integration. Here we describe an open-source high-throughput robotic strain isolation platform for the rapid generation of isolates on demand. We develop a machine learning approach that leverages colony morphology and genomic data to maximize the diversity of microbes isolated and enable targeted picking of specific genera. Application of this platform on fecal samples from 20 humans yields personalized gut microbiome biobanks totaling 26,997 isolates that represented >80% of all abundant taxa. Spatial analysis on >100,000 visually captured colonies reveals cogrowth patterns between Ruminococcaceae, Bacteroidaceae, Coriobacteriaceae and Bifidobacteriaceae families that suggest important microbial interactions. Comparative analysis of 1,197 high-quality genomes from these biobanks shows interesting intra- and interpersonal strain evolution, selection and horizontal gene transfer. This culturomics framework should empower new research efforts to systematize the collection and quantitative analysis of imaging-based phenotypes with high-resolution genomics data for many emerging microbiome studies.


Assuntos
Genômica , Microbiota , Humanos , Genômica/métodos , Microbiota/genética , Bactérias , Automação , Aprendizado de Máquina
5.
Curr Opin Microbiol ; 65: 47-55, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34739926

RESUMO

Microbial communities are a key part to tackling global challenges in human health, environmental conservation, and sustainable agriculture in the coming decade. Recent advances in synthetic biology to study and modify microbial communities have led to important insights into their physiology and ecology. Understanding how targeted changes to microbial communities result in reproducible alterations of the community's intrinsic fluctuations and function is important for mechanistic reconstruction of microbiomes. Studies of synthetic microbial consortia and comparative analysis of communities in normal and disrupted states have revealed ecological principles that can be leveraged to engineer communities towards desired functions. Tools enabling temporal modulation and sensing of the community dynamics offer precise spatiotemporal control of functions, help to dissect microbial interaction networks, and improve predictions of population temporal dynamics. Here we discuss recent advances to manipulate microbiome dynamics through control of specific strain engraftment and abundance, modulation of cell-cell signaling for tuning population dynamics, infiltration of new functions in the existing community with in situ engineering, and in silico modeling of microbial consortia to predict community function and ecology.


Assuntos
Microbiota , Humanos , Consórcios Microbianos , Interações Microbianas , Microbiota/fisiologia , Biologia Sintética
6.
Nat Biotechnol ; 39(4): 480-489, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33230293

RESUMO

Existing technologies for site-specific integration of kilobase-sized DNA sequences in bacteria are limited by low efficiency, a reliance on recombination, the need for multiple vectors, and challenges in multiplexing. To address these shortcomings, we introduce a substantially improved version of our previously reported Tn7-like transposon from Vibrio cholerae, which uses a Type I-F CRISPR-Cas system for programmable, RNA-guided transposition. The optimized insertion of transposable elements by guide RNA-assisted targeting (INTEGRATE) system achieves highly accurate and marker-free DNA integration of up to 10 kilobases at ~100% efficiency in bacteria. Using multi-spacer CRISPR arrays, we achieved simultaneous multiplexed insertions in three genomic loci and facile, multi-loci deletions by combining orthogonal integrases and recombinases. Finally, we demonstrated robust function in biomedically and industrially relevant bacteria and achieved target- and species-specific integration in a complex bacterial community. This work establishes INTEGRATE as a versatile tool for multiplexed, kilobase-scale genome engineering.


Assuntos
Edição de Genes/métodos , RNA Guia de Cinetoplastídeos/genética , Vibrio cholerae/genética , Sistemas CRISPR-Cas , Elementos de DNA Transponíveis , Genoma Bacteriano , Plasmídeos/genética
7.
Mol Syst Biol ; 15(8): e8875, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31464371

RESUMO

Cell-free expression systems enable rapid prototyping of genetic programs in vitro. However, current throughput of cell-free measurements is limited by the use of channel-limited fluorescent readouts. Here, we describe DNA Regulatory element Analysis by cell-Free Transcription and Sequencing (DRAFTS), a rapid and robust in vitro approach for multiplexed measurement of transcriptional activities from thousands of regulatory sequences in a single reaction. We employ this method in active cell lysates developed from ten diverse bacterial species. Interspecies analysis of transcriptional profiles from > 1,000 diverse regulatory sequences reveals functional differences in promoter activity that can be quantitatively modeled, providing a rich resource for tuning gene expression in diverse bacterial species. Finally, we examine the transcriptional capacities of dual-species hybrid lysates that can simultaneously harness gene expression properties of multiple organisms. We expect that this cell-free multiplex transcriptional measurement approach will improve genetic part prototyping in new bacterial chassis for synthetic biology.


Assuntos
Actinobacteria/genética , Firmicutes/genética , Ensaios de Triagem em Larga Escala , Proteobactérias/genética , Frações Subcelulares/metabolismo , Transcrição Gênica , Actinobacteria/química , Actinobacteria/metabolismo , Firmicutes/química , Firmicutes/metabolismo , Biblioteca Gênica , Regiões Promotoras Genéticas , Biossíntese de Proteínas , Proteobactérias/química , Proteobactérias/metabolismo , Frações Subcelulares/química , Biologia Sintética/métodos
8.
Nat Methods ; 16(2): 167-170, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30643213

RESUMO

Engineering of microbial communities in open environments remains challenging. Here we describe a platform used to identify and modify genetically tractable mammalian microbiota by engineering community-wide horizontal gene transfer events in situ. With this approach, we demonstrate that diverse taxa in the mouse gut microbiome can be modified directly with a desired genetic payload. In situ microbiome engineering in living animals allows novel capabilities to be introduced into established communities in their native milieu.


Assuntos
Microbioma Gastrointestinal , Metagenômica , Microbiota/genética , Engenharia de Proteínas/métodos , Animais , Separação Celular , Escherichia coli/genética , Feminino , Citometria de Fluxo , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/fisiologia , Técnicas de Transferência de Genes , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , Camundongos Endogâmicos C57BL , Plasmídeos/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
9.
Methods Mol Biol ; 1671: 27-37, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29170951

RESUMO

In molecular biology and cell factory engineering, tools that enable control of protein production and stability are highly important. Here, we describe protocols for tagging genes in Escherichia coli allowing for inducible degradation and transcriptional control of any soluble protein of interest. The underlying molecular biology is based on the two cross-kingdom tools CRISPRi and the N-end rule for protein degradation. Genome editing is performed with the CRMAGE technology and randomization of the translational initiation region minimizes the polar effects of tag insertion. The approach has previously been applied for targeting proteins originating from essential operon-located genes and has potential to serve as a universal synthetic biology tool.


Assuntos
Edição de Genes , Regulação da Expressão Gênica , Genoma Bacteriano , Transcrição Gênica , Sistemas CRISPR-Cas , Clonagem Molecular , Expressão Gênica , Técnicas de Silenciamento de Genes , Genes Essenciais , Fenótipo , Plasmídeos/genética , Estabilidade Proteica , RNA Guia de Cinetoplastídeos
10.
Metab Eng ; 38: 274-284, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27647432

RESUMO

Production of proteins and biochemicals in microbial cell factories is often limited by carbon and energy spent on excess biomass formation. To address this issue, we developed several genetic growth switches based on CRISPR interference technology. We demonstrate that growth of Escherichia coli can be controlled by repressing the DNA replication machinery, by targeting dnaA and oriC, or by blocking nucleotide synthesis through pyrF or thyA. This way, total GFP-protein production could be increased by up to 2.2-fold. Single-cell dynamic tracking in microfluidic systems was used to confirm functionality of the growth switches. Decoupling of growth from production of biochemicals was demonstrated for mevalonate, a precursor for isoprenoid compounds. Mass yield of mevalonate was increased by 41%, and production was maintained for more than 45h after activation of the pyrF-based growth switch. The developed methods represent a promising approach for increasing production yield and titer for proteins and biochemicals.


Assuntos
Proteínas de Bactérias/biossíntese , Carbono/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Genes de Troca/genética , Engenharia Metabólica/métodos , Synechococcus/genética , Proteínas de Bactérias/genética , Redes e Vias Metabólicas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Synechococcus/metabolismo , Ativação Transcricional/genética
11.
Sci Rep ; 6: 19452, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26797514

RESUMO

A bottleneck in metabolic engineering and systems biology approaches is the lack of efficient genome engineering technologies. Here, we combine CRISPR/Cas9 and λ Red recombineering based MAGE technology (CRMAGE) to create a highly efficient and fast method for genome engineering of Escherichia coli. Using CRMAGE, the recombineering efficiency was between 96.5% and 99.7% for gene recoding of three genomic targets, compared to between 0.68% and 5.4% using traditional recombineering. For modulation of protein synthesis (small insertion/RBS substitution) the efficiency was increased from 6% to 70%. CRMAGE can be multiplexed and enables introduction of at least two mutations in a single round of recombineering with similar efficiencies. PAM-independent loci were targeted using degenerate codons, thereby making it possible to modify any site in the genome. CRMAGE is based on two plasmids that are assembled by a USER-cloning approach enabling quick and cost efficient gRNA replacement. CRMAGE furthermore utilizes CRISPR/Cas9 for efficient plasmid curing, thereby enabling multiple engineering rounds per day. To facilitate the design process, a web-based tool was developed to predict both the λ Red oligos and the gRNAs. The CRMAGE platform enables highly efficient and fast genome editing and may open up promising prospective for automation of genome-scale engineering.


Assuntos
Sistemas CRISPR-Cas/genética , Engenharia Genética/métodos , Morte Celular , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Mutagênese Insercional , Mutação/genética , Motivos de Nucleotídeos/genética , Oligonucleotídeos/metabolismo , Plasmídeos/genética , Biossíntese de Proteínas , RNA Guia de Cinetoplastídeos/genética , Recombinases Rec A/metabolismo
12.
Microb Cell Fact ; 14: 97, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26148499

RESUMO

BACKGROUND: One of the bottlenecks in production of biochemicals and pharmaceuticals in Saccharomyces cerevisiae is stable and homogeneous expression of pathway genes. Integration of genes into the genome of the production organism is often a preferred option when compared to expression from episomal vectors. Existing approaches for achieving stable simultaneous genome integrations of multiple DNA fragments often result in relatively low integration efficiencies and furthermore rely on the use of selection markers. RESULTS: Here, we have developed a novel method, CrEdit (CRISPR/Cas9 mediated genome Editing), which utilizes targeted double strand breaks caused by CRISPR/Cas9 to significantly increase the efficiency of homologous integration in order to edit and manipulate genomic DNA. Using CrEdit, the efficiency and locus specificity of targeted genome integrations reach close to 100% for single gene integration using short homology arms down to 60 base pairs both with and without selection. This enables direct and cost efficient inclusion of homology arms in PCR primers. As a proof of concept, a non-native ß-carotene pathway was reconstructed in S. cerevisiae by simultaneous integration of three pathway genes into individual intergenic genomic sites. Using longer homology arms, we demonstrate highly efficient and locus-specific genome integration even without selection with up to 84% correct clones for simultaneous integration of three gene expression cassettes. CONCLUSIONS: The CrEdit approach enables fast and cost effective genome integration for engineering of S. cerevisiae. Since the choice of the targeting sites is flexible, CrEdit is a powerful tool for diverse genome engineering applications.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Engenharia Metabólica/métodos , Saccharomyces cerevisiae/genética , Expressão Gênica , Vetores Genéticos , Saccharomyces cerevisiae/metabolismo
13.
Biotechnol Bioeng ; 111(8): 1604-16, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24827782

RESUMO

Chinese hamster ovary (CHO) cells are widely used in the biopharmaceutical industry as a host for the production of complex pharmaceutical proteins. Thus genome engineering of CHO cells for improved product quality and yield is of great interest. Here, we demonstrate for the first time the efficacy of the CRISPR Cas9 technology in CHO cells by generating site-specific gene disruptions in COSMC and FUT8, both of which encode proteins involved in glycosylation. The tested single guide RNAs (sgRNAs) created an indel frequency up to 47.3% in COSMC, while an indel frequency up to 99.7% in FUT8 was achieved by applying lectin selection. All eight sgRNAs examined in this study resulted in relatively high indel frequencies, demonstrating that the Cas9 system is a robust and efficient genome-editing methodology in CHO cells. Deep sequencing revealed that 85% of the indels created by Cas9 resulted in frameshift mutations at the target sites, with a strong preference for single base indels. Finally, we have developed a user-friendly bioinformatics tool, named "CRISPy" for rapid identification of sgRNA target sequences in the CHO-K1 genome. The CRISPy tool identified 1,970,449 CRISPR targets divided into 27,553 genes and lists the number of off-target sites in the genome. In conclusion, the proven functionality of Cas9 to edit CHO genomes combined with our CRISPy database have the potential to accelerate genome editing and synthetic biology efforts in CHO cells.


Assuntos
Células CHO/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Fucosiltransferases/genética , Técnicas de Inativação de Genes/métodos , Chaperonas Moleculares/genética , Edição de RNA , Animais , Sequência de Bases , Cricetinae , Cricetulus , Endonucleases/genética , Endonucleases/metabolismo , Genoma , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Mutação INDEL , Internet , Dados de Sequência Molecular , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA