Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 244
Filtrar
1.
Sci Adv ; 10(24): eado4786, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38875328

RESUMO

By taking advantage of the effects of solvent selectivity and topology on high-χ block copolymer (BCP) for self-assembly, network phases with high packing frustration can be formed in self-assembled polystyrene-b-polydimethylsiloxane (PS-b-PDMS). Apart from gyroid with trigonal structure and diamond with tetrahedral structure, a peculiar network phase with space group of [Formula: see text] (Frank-Kasper structure) can be found in six-arm star-block PS-b-PDMS as evidenced by small-angle x-ray scattering. Electron tomography results reveal the network phase with alternating connection of three and four struts. The observed phase behaviors suggest that the network formation is built from the bisectors of dispersive spheres in the Frank-Kasper phase, instead of building connections among them, and thus decipher the origins of complex phase formation due to the adaptive character of malleable mesoatoms.

2.
ACS Macro Lett ; 13(6): 734-740, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38814070

RESUMO

This work aims to examine the effect of self-assembly on the chiroptic responses of the achiral block copolymer (BCP) polystyrene-b-poly(ethylene oxide) (PS-b-PEO) associated with chiral luminophores, (R)- or (S)-1,1'-bi-2-naphthol ((R)- or (S)-BINOL), through hydrogen bonding. With the formation of a well-ordered helical phase (H*), significantly induced circular dichroism (ICD) signals for the PEO block in the mixture can be found. Most interestingly, a remarkable amplification with an extremely large dissymmetry factor of luminescence (glum) from 10-3 to 0.3 (i.e., induced circular polarized luminescence (iCPL) behavior) for the chiral BINOLs in the mixture can be achieved by the formation of the helical phase (H*) via mesochiral self-assembly. As a result, by taking advantage of BCP for mesochiral self-assembly, it is feasible to create a nanostructured monolith with substantial optical activities, offering promising applications in the design of chiroptic devices.

3.
BMC Plant Biol ; 24(1): 70, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38263006

RESUMO

BACKGROUND: The genus Sanicula L. is a unique perennial herb that holds important medicinal values. Although the previous studies on Sanicula provided us with a good research basis, its taxonomic system and interspecific relationships have not been satisfactorily resolved, especially for those endemic to China. Moreover, the evolutionary history of this genus also remains inadequately understood. The plastid genomes possessing highly conserved structure and limited evolutionary rate have proved to be an effective tool for studying plant phylogeny and evolution. RESULTS: In the current study, we newly sequenced and assembled fifteen Sanicula complete plastomes. Combined with two previously reported plastomes, we performed comprehensively plastid phylogenomics analyses to gain novel insights into the evolutionary history of this genus. The comparative results indicated that the seventeen plastomes exhibited a high degree of conservation and similarity in terms of their structure, size, GC content, gene order, IR borders, codon bias patterns and SSRs profiles. Such as all of them displayed a typical quadripartite structure, including a large single copy region (LSC: 85,074-86,197 bp), a small single copy region (SSC: 17,047-17,132 bp) separated by a pair of inverted repeat regions (IRs: 26,176-26,334 bp). And the seventeen plastomes had similar IR boundaries and the adjacent genes were identical. The rps19 gene was located at the junction of the LSC/IRa, the IRa/SSC junction region was located between the trnN gene and ndhF gene, the ycf1 gene appeared in the SSC/IRb junction and the IRb/LSC boundary was located between rpl12 gene and trnH gene. Twelve specific mutation hotspots (atpF, cemA, accD, rpl22, rbcL, matK, ycf1, trnH-psbA, ycf4-cemA, rbcL-accD, trnE-trnT and trnG-trnR) were identified that can serve as potential DNA barcodes for species identification within the genus Sanicula. Furthermore, the plastomes data and Internal Transcribed Spacer (ITS) sequences were performed to reconstruct the phylogeny of Sanicula. Although the tree topologies of them were incongruent, both provided strong evidence supporting the monophyly of Saniculoideae and Apioideae. In addition, the sister groups between Saniculoideae and Apioideae were strongly suggested. The Sanicula species involved in this study were clustered into a clade, and the Eryngium species were also clustered together. However, it was clearly observed that the sections of Sanicula involved in the current study were not respectively recovered as monophyletic group. Molecular dating analysis explored that the origin of this genus was occurred during the late Eocene period, approximately 37.84 Ma (95% HPD: 20.33-52.21 Ma) years ago and the diversification of the genus was occurred in early Miocene 18.38 Ma (95% HPD: 10.68-25.28 Ma). CONCLUSION: The plastome-based tree and ITS-based tree generated incongruences, which may be attributed to the event of hybridization/introgression, incomplete lineage sorting (ILS) and chloroplast capture. Our study highlighted the power of plastome data to significantly improve the phylogenetic supports and resolutions, and to efficiently explore the evolutionary history of this genus. Molecular dating analysis explored that the diversification of the genus occurred in the early Miocene, which was largely influenced by the prevalence of the East Asian monsoon and the uplift of the Hengduan Mountains (HDM). In summary, our study provides novel insights into the plastome evolution, phylogenetic relationships, taxonomic framework and evolution of genus Sanicula.


Assuntos
Apiaceae , Sanicula , Filogenia , Plastídeos , Cloroplastos
4.
Biofabrication ; 16(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38241709

RESUMO

The suitable microenvironment of bone regeneration is critically important for periodontitis-derived bone defect repair. Three major challenges in achieving a robust osteogenic reaction are the exist of oral inflammation, pathogenic bacteria invasion and unaffluent seed cells. Herein, a customizable and multifunctional 3D-printing module was designed with glycidyl methacrylate (GMA) modified epsilon-poly-L-lysine (EPLGMA) loading periodontal ligament stem cells (PDLSCs) and myeloid-derived suppressive cells membrane vesicles (MDSCs-MV) bioink (EPLGMA/PDLSCs/MDSCs-MVs, abbreviated as EPM) for periodontitis-derived bone defect repair. The EPM showed excellent mechanical properties and physicochemical characteristics, providing a suitable microenvironment for bone regeneration.In vitro, EPMs presented effectively kill the periodontopathic bacteria depend on the natural antibacterial properties of the EPL. Meanwhile, MDSCs-MV was confirmed to inhibit T cells through CD73/CD39/adenosine signal pathway, exerting an anti-inflammatory role. Additionally, seed cells of PDLSCs provide an adequate supply for osteoblasts. Moreover, MDSCs-MV could significantly enhance the mineralizing capacity of PDLSCs-derived osteoblast. In the periodontal bone defect rat model, the results of micro-CT and histological staining demonstrated that the EPM scaffold similarly had an excellent anti-inflammatory and bone regeneration efficacyin vivo. This biomimetic and multifunctional 3D-printing bioink opens new avenues for periodontitis-derived bone defect repair and future clinical application.


Assuntos
Periodontite , Ratos , Animais , Periodontite/terapia , Periodontite/metabolismo , Células-Tronco/metabolismo , Osteogênese , Inflamação , Ligamento Periodontal/metabolismo , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Diferenciação Celular , Células Cultivadas
5.
Angew Chem Int Ed Engl ; 63(7): e202317102, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38140766

RESUMO

Chirality transfer is essential to acquire helical hierarchical superstructures from the self-assembly of supramolecular materials. By taking advantage of chirality transfers at different length scales through intra-chain and inter-chain chiral interactions, helical phase (H*) can be formed from the self-assembly of chiral block copolymers (BCPs*). In this study, chiral triblock terpolymers, polystyrene-b-poly(ethylene oxide)-b-poly(L-lactide) (PS-PEO-PLLA), and polystyrene-b-poly(4-vinylpyridine)-b-poly(L-lactide) (PS-P4VP-PLLA) are synthesized for self-assembly. For PS-PEO-PLLA with an achiral PEO mid-block that is compatible with PLLA (chiral end-block), H* can be formed while the block length is below a critical value. By contrast, for the one with achiral P4VP mid-block that is incompatible with PLLA, the formation of H* phase would be suppressed regardless of the length of the mid-block, giving cylinder phase. Those results elucidate a new type of chirality transfer across the phase domain that is referred as cross-domain chirality transfer, providing complementary understanding of the chirality transfer at the interface of phase-separated domains.

6.
Nat Commun ; 14(1): 5844, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730705

RESUMO

P2X receptors are cation channels that sense extracellular ATP. Many therapeutic candidates targeting P2X receptors have begun clinical trials or acquired approval for the treatment of refractory chronic cough (RCC) and other disorders. However, the present negative allosteric modulation of P2X receptors is primarily limited to the central pocket or the site below the left flipper domain. Here, we uncover a mechanism of allosteric regulation of P2X3 in the inner pocket of the head domain (IP-HD), and show that the antitussive effects of quercetin and PSFL2915 (our nM-affinity P2X3 inhibitor optimized based on quercetin) on male mice and guinea pigs were achieved by preventing allosteric changes of IP-HD in P2X3. While being therapeutically comparable to the newly licensed P2X3 RCC drug gefapixant, quercetin and PSFL2915 do not have an adverse effect on taste as gefapixant does. Thus, allosteric modulation of P2X3 via IP-HD may be a druggable strategy to alleviate RCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Masculino , Animais , Cobaias , Camundongos , Tosse/tratamento farmacológico , Quercetina/farmacologia , Quercetina/uso terapêutico , Paladar
7.
ACS Nano ; 17(16): 15678-15686, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37387522

RESUMO

Inspired by knobby starfish, this work demonstrates a bottom-up approach for fabricating a calcite single-crystal (CSC) with a diamond structure by exploiting the self-assembly of the block copolymer and corresponding templated synthesis. Similar to the knobby starfish, the diamond structure of the CSC gives rise to a brittle-to-ductile transition. Most interestingly, the diamond-structured CSC fabricated exhibits exceptional specific energy absorption and strength with lightweight character superior to natural materials and artificial counterparts from a top-down approach due to the nanosized effect. This approach provides the feasibility for creating mechanical metamaterials with the combined effects of the topology and nanosize on the mechanical performance.

8.
ACS Macro Lett ; 12(5): 570-576, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37053545

RESUMO

Herein, this work aims to directly visualize the morphological evolution of the controlled self-assembly of star-block polystyrene-block-polydimethylsiloxane (PS-b-PDMS) thin films via in situ transmission electron microscopy (TEM) observations. With an environmental chip, possessing a built-in metal wire-based microheater fabricated by the microelectromechanical system (MEMS) technique, in situ TEM observations can be conducted under low-dose conditions to investigate the development of film-spanning perpendicular cylinders in the block copolymer (BCP) thin films via a self-alignment process. Owing to the free-standing condition, a symmetric condition of the BCP thin films can be formed for thermal annealing under vacuum with neutral air surface, whereas an asymmetric condition can be formed by an air plasma treatment on one side of the thin film that creates an end-capped neutral layer. A systematic comparison of the time-resolved self-alignment process in the symmetric and asymmetric conditions can be carried out, giving comprehensive insights for the self-alignment process via the nucleation and growth mechanism.

9.
Macromol Rapid Commun ; 44(1): e2200369, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35836097

RESUMO

Many sophisticated chiral materials are found in living organisms, giving specific functions and required complexity. Owing to the remarkable optical properties of chiral materials, they have drawn significant attention for the development of synthetic materials to give optical activities for appealing applications. In contrast to a top-down approach, the bottom-up approach from self-assembled systems with chiral host-achiral guest and achiral guest-chiral host for induced circular dichroism and induced circularly polarized luminescence has greatly emerged because of its cost-effective advantage with easy fabrication for mesoscale assembly. Self-assembled hierarchical textures with chiral sense indeed give significant amplification of the dissymmetry factors of absorption and luminescence (gabs and glum ), resulting from the formation of well-ordered superstructures and phases with the building of chromophores and luminophores. By taking advantage of the microphase separation of block copolymers via self-assembly, a variety of well-defined chiral nanostructures can be formed as tertiary superstructures that can be further extended to quaternary phases in bulk or thin film. In this article, a conceptual perspective is presented to utilize the self-assembly of chiral block copolymers with chiral communications, giving quaternary phases with well-ordered textures at the nanoscale for significant enhancement of dissymmetry factors.


Assuntos
Luminescência , Nanoestruturas , Dicroísmo Circular , Polímeros
10.
ACS Macro Lett ; 11(11): 1306-1311, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36326692

RESUMO

This paper presents a facile method for fabricating a thin-film sample with a high asymmetry value of induced circularly polarized luminescence (iCPL) (|glum| = 2.0 × 10-3). The method involves mixing stereoregular poly(methyl methacrylate) (PMMA) and chiral chromophore (2,2,2-trifluoro-1-(9-anthryl)ethanol (TFAE)) to form a complex with a dynamic helical conformation of poly(methyl methacrylate) (PMMA) associated with TFAE via hydrogen bonding. This dynamic helical conformation can be stabilized by the stereocomplexation of a pair of stereoregular PMMA, where the TFAE is sandwiched between a double-helix isotactic PMMA and single-helix syndiotactic PMMA, resulting in a preferential one-handed helical conformation with a high value of iCPL from self-assembly.


Assuntos
Luminescência , Polimetil Metacrilato , Polimetil Metacrilato/química , Estereoisomerismo , Conformação Molecular
11.
ACS Appl Mater Interfaces ; 14(48): 54194-54202, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36404593

RESUMO

Herein, this work aims to carry out controlled self-assembly of single-composition block copolymer for the fabrication of various nanonetwork silica monoliths. With the use of lamellae-forming polystyrene-block-polydimethylsiloxane (PS-b-PDMS), nanonetwork-structured films could be fabricated by solvent annealing using a PS-selective solvent (chloroform). By simply tuning the flow rate of nitrogen purge to the PS-selective solvent for the controlled self-assembly of the PS-b-PDMS, gyroid- and diamond-structured monoliths can be formed due to the difference in the effective volume of PS in the PS-b-PDMS during solvent annealing. As a result, well-ordered nanonetwork SiO2 (silica) monoliths can be fabricated by templated sol-gel reaction using hydrofluoric acid etched PS-b-PDMS film as a template followed by the removal of the PS. This bottom-up approach for the fabrication of nanonetwork materials through templated synthesis is appealing to create nanonetwork materials for various applications.

12.
ACS Nano ; 16(11): 18298-18306, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36264050

RESUMO

Inspired by Mantis shrimp, this work aims to suggest a bottom-up approach for the fabrication of nanonetwork hydroxyapatite (HAp) thin film using self-assembled polystyrene-block-polydimethylsiloxane (PS-b-PDMS) block copolymer (BCP) with a diamond nanostructure as a template for templated sol-gel reaction. By introducing poly(vinylpyrrolidone) (PVP) into precursors of calcium nitrate tetrahydrate and triethyl phosphite, which limits the growth of forming HAp nanoparticles, well-ordered nanonetwork HAp thin film can be fabricated. Based on nanoindentation results, the well-ordered nanonetwork HAp shows high energy dissipation compared to the intrinsic HAp. Moreover, the uniaxial microcompression test for the nanonetwork HAp shows high energy absorption per volume and high compression strength, outperforming many cellular materials due to the topologic effect of the well-ordered network at the nanoscale. This work highlights the potential of exploiting BCP templated synthesis to fabricate ionic solid materials with a well-ordered nanonetwork monolith, giving rise to the brittle-to-ductile transition, and thus appealing mechanical properties with the character of mechanical metamaterials.


Assuntos
Nanopartículas , Nanoestruturas , Durapatita/química , Polímeros/química , Nanoestruturas/química , Poliestirenos/química
13.
Zhongguo Gu Shang ; 35(10): 1004-7, 2022 Oct 25.
Artigo em Chinês | MEDLINE | ID: mdl-36280422

RESUMO

OBJECTIVE: To investigate clinical effect of sternoclavicular hook plate in treating acute proximal clavicle fracture. METHODS: The clinical of 12 patients with acute unstable proximal clavicle fracture from June 2016 to June 2019 were retrospectively analyzed. There were 8 males and 4 females, aged from 46 to 63 years old. Ten patients caused by car accident and 2 patients caused by high falling. All patients had multiple injuries;the time from injury to surgery ranged from 2 to 14 d. All patients were treated with domestic sternoclavicular joint hook plate. The operative time ranged from 40 to 115 min. The intraoperative bleeding volume ranged from 30 to 110 ml, follow-up time ranged from 10 to 36 months, the fracture healing time ranged from 8 to 18 weeks. At the latest follow-up, the efficacy was evaluated by using shoulder joint function score (Rockwood score). RESULTS: All 12 patients were followed up, with no obvious pain at the latest follow-up. The rockwood scores of the affected shoulder ranged from 13 to 14, and the healthy shoulder ranged from 14 to 15. CONCLUSION: The sternocleidoclavicular joint plate is fixed with preformed plate. The cantilever is designed to retain the motion of the sternoclavicular joint. It's safe and simple, avoid, the injury of important organs during operation, and has a good prognosis. It is an ideal fixation method for the treatment of proximal clavicle fracture.


Assuntos
Fraturas Ósseas , Articulação Esternoclavicular , Masculino , Feminino , Humanos , Pessoa de Meia-Idade , Clavícula/cirurgia , Clavícula/lesões , Articulação Esternoclavicular/cirurgia , Articulação Esternoclavicular/lesões , Estudos Retrospectivos , Fixação Interna de Fraturas/métodos , Resultado do Tratamento , Fraturas Ósseas/cirurgia
14.
Zool Res ; 43(5): 886-896, 2022 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-36052553

RESUMO

Various peptide toxins in animal venom inhibit voltage-gated sodium ion channel Nav1.7, including Nav-targeting spider toxin (NaSpTx) Family I. Toxins in NaSpTx Family I share a similar structure, i.e., N-terminal, loops 1-4, and C-terminal. Here, we used Mu-theraphotoxin-Ca2a (Ca2a), a peptide isolated from Cyriopagopus albostriatus, as a template to investigate the general properties of toxins in NaSpTx Family I. The toxins interacted with the cell membrane prior to binding to Nav1.7 via similar hydrophobic residues. Residues in loop 1, loop 4, and the C-terminal primarily interacted with the S3-S4 linker of domain II, especially basic amino acids binding to E818. We also identified the critical role of loop 2 in Ca2a regarding its affinity to Nav1.7. Our results provide further evidence that NaSpTx Family I toxins share similar structures and mechanisms of binding to Nav1.7.


Assuntos
Venenos de Aranha , Animais , Peptídeos/química , Canais de Sódio , Venenos de Aranha/química , Venenos de Aranha/genética , Venenos de Aranha/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/química , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/uso terapêutico
15.
Front Neurorobot ; 16: 832005, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36017416

RESUMO

Background: Barbell squats are commonly used in daily training and rehabilitation. Injuries are not common when the posture is standard, but the wrong posture can lead to injuries. Rearfoot valgus is a common foot abnormality that may increase the risk of injury during sports. The purpose of this study was to compare the biomechanics of lower limbs in normal foot and valgus patients during barbell squat. Methods: In this study, 10 participants with normal foot shape and 10 participants with rearfoot valgus were enrolled. The joint angle, joint moment, and range of motion of hip, knee, and ankle joints were collected under 0, 30, and 70% one-repetition maximum (RM) load, where discrete data are statistically analyzed using the independent sample t-test, and continuous data are statistically analyzed using one-dimensional parameter statistical mapping. Results: In barbell squats, the range of motion and the joint moment of the hip, knee, and ankle in the rearfoot valgus participants were significantly larger than those in normal foot participants (p < 0.05). The participants with rearfoot valgus had a more significant knee valgus angle when squatting to the deepest (p < 0.05). In addition, with the increase in load, the participants with rearfoot valgus showed greater standardized medial knee contact force (p < 0.05). In the process of barbell squats, the participants with rearfoot valgus showed no significant difference in the foot valgus angle when compared with the normal foot shape (p > 0.05). Conclusions: The valgus population showed a greater range of joint motion when performing barbell squats and showed genu valgus and greater medial knee contact force, which may increase the risk of musculoskeletal and soft tissue damage such as meniscus wear. In addition, there was no significant difference in the rearfoot valgus angle between people with rearfoot valgus and people with normal foot shape during squatting, so barbell squatting may correct valgus to a certain extent.

16.
Bioengineering (Basel) ; 9(7)2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35877373

RESUMO

Tibial shock attenuation is part of the mechanism that maintains human body stabilization during running. It is crucial to understand how shock characteristics transfer from the distal to proximal joint in the lower limb. This study aims to investigate the shock acceleration and attenuation among maximalist shoes (MAXs), minimalist shoes (MINs), and conventional running shoes (CONs) in time and frequency domains. Time-domain parameters included time to peak acceleration and peak resultant acceleration, and frequency-domain parameters contained lower (3−8 Hz) and higher (9−20 Hz) frequency power spectral density (PSD) and shock attenuation. Compared with CON and MAX conditions, MINs significantly increased the peak impact acceleration of the distal tibia (p = 0.01 and p < 0.01). Shock attenuation in the lower frequency depicted no difference but was greater in the MAXs in the higher frequency compared with the MIN condition (p < 0.01). MINs did not affect the tibial shock in both time and frequency domains at the proximal tibia. These findings may provide tibial shock information for choosing running shoes and preventing tibial stress injuries.

17.
ACS Macro Lett ; 11(7): 930-934, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35802510

RESUMO

Significant enhancement of segment-scale chirality, as measured by vibrational circular dichroism (VCD), is observed in the helical phase (H*) of polylactide-based chiral block copolymers (BCPs*) due to the mesoscale chirality of the microphase-separated domains. Here, we report a weaker, yet meaningful, enhancement on the VCD signal of a double gyroid phase (DG) as compared to a double diamond phase (DD) and disordered phase from the same diblock BCPs*. Residual VCD enhancement indicates a weak degree of chiral symmetry breaking, implying the formation of a chiral double gyroid (DG*) instead of the canonical achiral form. Calculations on the basis of orientational self-consistent field theory, comparing coupling between the segmental-scale preference of an intradomain twist and morphological chirality, show that a transition between DG and DG* takes place above the critical chiral strength, driving a weak volume asymmetry between the two enantiomeric single networks of DG*. The formation of nanostructures with controllable mesoscale chiral asymmetry indicates a pathway for the amplification of optical activity driven by self-assembly.

18.
ACS Nano ; 16(8): 12686-12694, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35905494

RESUMO

This work aims to demonstrate a facile method for the controlled orientation of nanostructures of block copolymer (BCP) thin films. A simple diblock copolymer system, polystyrene-block-polydimethylsiloxane (PS-b-PDMS), is chosen to demonstrate vacuum-driven orientation for solving the notorious low-surface-energy problem of silicon-based BCP nanopatterning. By taking advantage of the pressure dependence of the surface tension of polymeric materials, a neutral air surface for the PS-b-PDMS thin film can be formed under a high vacuum degree (∼10-4 Pa), allowing the formation of the film-spanning perpendicular cylinders and lamellae upon thermal annealing. In contrast to perpendicular lamellae, a long-range lateral order for forming perpendicular cylinders can be efficiently achieved through the self-alignment mechanism for induced ordering from the top and bottom of the free-standing thin film.

19.
Acc Chem Res ; 55(15): 2033-2042, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35849801

RESUMO

Through the morphological evolution to give highly optimized complex architectures at different length scales, fine-tuned textures for specific functions in living organisms can be achieved in nature such as a bone core with very complicated porous architecture to attain a significant structural efficiency attributed to delicately structured ligaments and density gradients. As inspired by nature, materials with periodic network structures (i.e., well-defined porous textures) in the nanoscale are appealing and promising for innovative properties. Biomimicking from nature, organic and/or inorganic nanonetworks can be synthetically fabricated, giving broadness and effectiveness when tuning the desired properties. Metamaterials are materials whose effective properties do not result from the bulk behavior of the constituent materials but rather mainly from their deliberate structuring. The performances of fabricating metamaterials will depend on the control of size, shape, order, and orientation of the forming textures. One of the appealing textures for the deliberate structuring is network architecture. Network materials possess self-supporting frameworks, open-cell character, high porosity, and large specific surface area, giving specific functions and complexity for diverse applications. As demonstrated by recent studies, exceptional mechanical performances such as negative thermal expansion, negative Poisson's ratio, and twisting under uniaxial forces can be achieved by the effect of the deliberate structuring with nanonetwork textures. In contrast to a top-down approach, a bottom-up approach is cost-effective, and also it can overcome the size limitation to reach nanoscale fabrication. It can be foreseen that network metamaterials with a feature size of tens of nanometers (referred as nanonetwork metamaterials) may provide new comprehension of the structure and property relationships for various materials. The self-assembly of block copolymers (BCPs) is one of the most used methods to build up well-ordered nanostructured phases from a bottom-up approach with precise control of size, shape, and orientation in the thin films for realistic applications. In this account, we summarize recent advancements in the fabrication of nanohybrids and nanoporous materials with well-ordered nanonetwork textures even with controlled helicity by combining block copolymer self-assembly and templated syntheses for mechanical and optical applications with superior properties beyond nature as metamaterials as well as chiral metamaterials with new properties for chiroptic applications such as chiral plasmonics, beam splitter, and negative refraction. The description of the fundamental facets of a nonconventional structure-property relationship with the characters of metamaterials and the state-of-the-art methodologies to fabricate nanonetworks using block copolymer self-assembly will stimulate research activities for the development of nanonetwork metamaterials with exceptional individual and multifunctional properties for futuristic devices.


Assuntos
Nanoestruturas , Polímeros , Nanoestruturas/química , Polímeros/química , Porosidade
20.
Polymers (Basel) ; 14(9)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35567059

RESUMO

Herein, this work aims to fabricate well-ordered nanonetwork epoxy resin modified with poly(butyl acrylate)-b-poly(methyl methacrylate) (PBA-b-PMMA) block copolymer (BCP) for enhanced energy dissipation using a self-assembled diblock copolymer of polystyrene-b-poly(dimethylsiloxane) (PS-b-PDMS) with gyroid and diamond structures as templates. A systematic study of mechanical properties using nanoindentation of epoxy resin with gyroid- and diamond-structures after modification revealed significant enhancement in energy dissipation, with the values of 0.36 ± 0.02 nJ (gyroid) and 0.43 ± 0.03 nJ (diamond), respectively, when compared to intrinsic epoxy resin (approximately 0.02 ± 0.002 nJ) with brittle characteristics. This enhanced property is attributed to the synergic effect of the deliberate structure with well-ordered nanonetwork texture and the toughening of BCP-based modifiers at the molecular level. In addition to the deliberate structural effect from the nanonetwork texture, the BCP modifier composed of epoxy-philic hard segment and epoxy-phobic soft segment led to dispersed soft-segment domains in the nanonetwork-structured epoxy matrix with superior interfacial strength for the enhancement of applied energy dissipation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA