Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 5844, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730705

RESUMO

P2X receptors are cation channels that sense extracellular ATP. Many therapeutic candidates targeting P2X receptors have begun clinical trials or acquired approval for the treatment of refractory chronic cough (RCC) and other disorders. However, the present negative allosteric modulation of P2X receptors is primarily limited to the central pocket or the site below the left flipper domain. Here, we uncover a mechanism of allosteric regulation of P2X3 in the inner pocket of the head domain (IP-HD), and show that the antitussive effects of quercetin and PSFL2915 (our nM-affinity P2X3 inhibitor optimized based on quercetin) on male mice and guinea pigs were achieved by preventing allosteric changes of IP-HD in P2X3. While being therapeutically comparable to the newly licensed P2X3 RCC drug gefapixant, quercetin and PSFL2915 do not have an adverse effect on taste as gefapixant does. Thus, allosteric modulation of P2X3 via IP-HD may be a druggable strategy to alleviate RCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Masculino , Animais , Cobaias , Camundongos , Tosse/tratamento farmacológico , Quercetina/farmacologia , Quercetina/uso terapêutico , Paladar
2.
Zool Res ; 43(5): 886-896, 2022 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-36052553

RESUMO

Various peptide toxins in animal venom inhibit voltage-gated sodium ion channel Nav1.7, including Nav-targeting spider toxin (NaSpTx) Family I. Toxins in NaSpTx Family I share a similar structure, i.e., N-terminal, loops 1-4, and C-terminal. Here, we used Mu-theraphotoxin-Ca2a (Ca2a), a peptide isolated from Cyriopagopus albostriatus, as a template to investigate the general properties of toxins in NaSpTx Family I. The toxins interacted with the cell membrane prior to binding to Nav1.7 via similar hydrophobic residues. Residues in loop 1, loop 4, and the C-terminal primarily interacted with the S3-S4 linker of domain II, especially basic amino acids binding to E818. We also identified the critical role of loop 2 in Ca2a regarding its affinity to Nav1.7. Our results provide further evidence that NaSpTx Family I toxins share similar structures and mechanisms of binding to Nav1.7.


Assuntos
Venenos de Aranha , Animais , Peptídeos/química , Canais de Sódio , Venenos de Aranha/química , Venenos de Aranha/genética , Venenos de Aranha/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/química , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/uso terapêutico
3.
J Cell Physiol ; 234(8): 13720-13734, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30644093

RESUMO

Nonhuman primates (NHPs) play an indispensable role in biomedical research because of their similarities in genetics, physiological, and neurological function to humans. Proteomics profiling of monkey heart could reveal significant cardiac biomarkers and help us to gain a better understanding of the pathogenesis of heart disease. However, the proteomic study of monkey heart is relatively lacking. Here, we performed the proteomics profiling of the normal monkey heart by measuring three major anatomical regions (vessels, valves, and chambers) based on iTRAQ-coupled LC-MS/MS analysis. Over 3,200 proteins were identified and quantified from three heart tissue samples. Furthermore, multiple bioinformatics analyses such as gene ontology analysis, protein-protein interaction analysis, and gene-diseases association were used to investigate biological network of those proteins from each area. More than 60 genes in three heart regions are implicated with heart diseases such as hypertrophic cardiomyopathy, heart failure, and myocardial infarction. These genes associated with heart disease are mainly enriched in citrate cycle, amino acid degradation, and glycolysis pathway. At the anatomical level, the revelation of molecular characteristics of the healthy monkey heart would be an important starting point to investigate heart disease. As a unique resource, this study can serve as a reference map for future in-depth research on cardiac disease-related NHP model and novel biomarkers of cardiac injury.


Assuntos
Sistema Cardiovascular , Valvas Cardíacas , Coração , Miocárdio , Animais , Biologia Computacional , Macaca mulatta , Masculino , Proteoma , Proteômica , Valores de Referência
4.
Acta Pharmacol Sin ; 40(7): 859-866, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30382183

RESUMO

Human genetic and pharmacological studies have demonstrated that voltage-gated sodium channels (VGSCs) are promising therapeutic targets for the treatment of pain. Spider venom contains many toxins that modulate the activity of VGSCs. To date, only 0.01% of such spider toxins has been explored, and thus there is a great potential for discovery of novel VGSC modulators as useful pharmacological tools or potential therapeutics. In the current study, we identified a novel peptide, µ-TRTX-Ca1a (Ca1a), in the venom of the tarantula Cyriopagopus albostriatus. This peptide consisted of 38 residues, including 6 cysteines, i.e. IFECSISCEIEKEGNGKKCKPKKCKGGWKCKFNICVKV. In HEK293T or ND7/23 cells expressing mammalian VGSCs, this peptide exhibited the strongest inhibitory activity on Nav1.7 (IC50 378 nM), followed by Nav1.6 (IC50 547 nM), Nav1.2 (IC50 728 nM), Nav1.3 (IC50 2.2 µM) and Nav1.4 (IC50 3.2 µM), and produced negligible inhibitory effect on Nav1.5, Nav1.8, and Nav1.9, even at high concentrations of up to 10 µM. Furthermore, this peptide did not significantly affect the activation and inactivation of Nav1.7. Using site-directed mutagenesis of Nav1.7 and Nav1.4, we revealed that its binding site was localized to the DIIS3-S4 linker region involving the D816 and E818 residues. In three different mouse models of pain, pretreatment with Cala (100, 200, 500 µg/kg) dose-dependently suppressed the nociceptive responses induced by formalin, acetic acid or heat. These results suggest that Ca1a is a novel neurotoxin against VGSCs and has a potential to be developed as a novel analgesic.


Assuntos
Analgésicos/farmacologia , Proteínas de Artrópodes/farmacologia , Neurotoxinas/farmacologia , Venenos de Aranha/farmacologia , Aranhas/química , Sequência de Aminoácidos , Analgésicos/isolamento & purificação , Analgésicos/metabolismo , Animais , Proteínas de Artrópodes/isolamento & purificação , Proteínas de Artrópodes/metabolismo , Linhagem Celular Tumoral , Gânglios Espinais/efeitos dos fármacos , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Neurônios/efeitos dos fármacos , Neurotoxinas/isolamento & purificação , Neurotoxinas/metabolismo , Periplaneta , Ligação Proteica , Venenos de Aranha/isolamento & purificação , Venenos de Aranha/metabolismo , Bloqueadores do Canal de Sódio Disparado por Voltagem/isolamento & purificação , Bloqueadores do Canal de Sódio Disparado por Voltagem/metabolismo , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia
5.
Chin J Nat Med ; 14(9): 661-670, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27667511

RESUMO

The present study was designed to search for compounds with analgesic activity from the Schizophyllum commune (SC), which is widely consumed as edible and medicinal mushroom world. Thin layer chromatography (TLC), tosilica gel column chromatography, sephadex LH 20, and reverse-phase high performance liquid chromatography (RP-HPLC) were used to isolate and purify compounds from SC. Structural analysis of the isolated compounds was based on nuclear magnetic resonance (NMR). The effects of these compounds on voltage-gated sodium (NaV) channels were evaluated using patch clamp. The analgesic activity of these compounds was tested in two types of mouse pain models induced by noxious chemicals. Five phenolic acids identified from SC extracts in the present study included vanillic acid, m-hydroxybenzoic acid, o-hydroxybenzeneacetic acid, 3-hydroxy-5-methybenzoic acid, and p-hydroxybenzoic acid. They inhibited the activity of both tetrodotoxin-resistant (TTX-r) and tetrodotoxin-sensitive (TTX-s) NaV channels. All the compounds showed low selectivity on NaV channel subtypes. After intraperitoneal injection, three compounds of these compounds exerted analgesic activity in mice. In conclusion, phenolic acids identified in SC demonstrated analgesic activity, facilitating the mechanistic studies of SC in the treatment of neurasthenia.


Assuntos
Analgésicos/administração & dosagem , Hidroxibenzoatos/administração & dosagem , Neurastenia/tratamento farmacológico , Schizophyllum/química , Bloqueadores do Canal de Sódio Disparado por Voltagem/administração & dosagem , Canais de Sódio Disparados por Voltagem/metabolismo , Analgésicos/química , Analgésicos/isolamento & purificação , Animais , Humanos , Hidroxibenzoatos/química , Hidroxibenzoatos/isolamento & purificação , Camundongos , Neurastenia/genética , Neurastenia/metabolismo , Bloqueadores do Canal de Sódio Disparado por Voltagem/química , Bloqueadores do Canal de Sódio Disparado por Voltagem/isolamento & purificação , Canais de Sódio Disparados por Voltagem/genética
6.
Toxins (Basel) ; 8(1)2015 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-26729167

RESUMO

Several species of the genus Veratrum that produce steroid alkaloids are commonly used to treat pain and hypertension in China and Europe. However, Veratrum alkaloids (VAs) induce serious cardiovascular toxicity. In China, Veratrum treatment often leads to many side effects and even causes the death of patients, but the pathophysiological mechanisms under these adverse effects are not clear. Here, two solanidine-type VAs (isorubijervine and rubijervine) isolated from Veratrum taliense exhibited strong cardiovascular toxicity. A pathophysiological study indicated that these VAs blocked sodium channels Na(V)1.3-1.5 and exhibited the strongest ability to inhibit Na(V)1.5, which is specifically expressed in cardiac tissue and plays an essential role in cardiac physiological function. This result reveals that VAs exert their cardiovascular toxicity via the Na(V)1.5 channel. The effects of VAs on Na(V)1.3 and Na(V)1.4 may be related to their analgesic effect and skeletal muscle toxicity, respectively.


Assuntos
Alcaloides/toxicidade , Coração/efeitos dos fármacos , Canal de Sódio Disparado por Voltagem NAV1.5/fisiologia , Veratrum , Animais , Pressão Sanguínea/efeitos dos fármacos , Eletrocardiografia , Coração/fisiologia , Frequência Cardíaca/efeitos dos fármacos , Humanos , Dose Letal Mediana , Macaca , Masculino , Camundongos , Canal de Sódio Disparado por Voltagem NAV1.3/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.4/fisiologia , Raízes de Plantas , Ratos
7.
Nat Prod Bioprospect ; 4(5): 309-13, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25294221

RESUMO

Various kinds of biologically active peptides have previously been isolated from the skin secretions of Amolops loloensis frog, such as antimicrobial peptides, bradykinin-like peptides and algesic peptides. A novel insulinotropic peptide named amolopin was identified in A. loloensis frog's skin secretion. Its primary structure sequence was determined by Edman degradation as: FLPIVGKSLSGLSGKL-NH2. BLAST search indicates that the amino acid sequence of amolopin is quite different from other known insulin secretagogues, including mastoparan, exendins and α-latrotoxin, nor does it like incretins (e.g. glucagons like peptide-1 and glucose-dependent insulinotropic ploypeptide) either. However, amolopin shows certain structural similarity with amphibian antimicrobial temporins and vespid chemotactic peptides isolated from Vespa magnifica. Amolopin can stimulate insulin release in INS-1 cells in a dose-dependent manner. Primary investigation on its action mechanisms reveals that amolopin does not increase the influx of Ca(2+). In conclusion, a novel 16-amino acid peptide with insulin-releasing activity is initially discovered from the skin secretion of A. loloensis frog. Further work is necessary to evaluate its potential as novel anti-diabetic candidate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA