Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Cell Physiol ; 238(6): 1368-1380, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37021796

RESUMO

Human mesenchymal stem cells (hMSCs) are the cornerstone of regenerative medicine; large quantities of hMSCs are required via in vitro expansion to meet therapeutic purposes. However, hMSCs quickly lose their osteogenic differentiation potential during in vitro expansion, which is a major roadblock to their clinical applications. In this study, we found that the osteogenic differentiation potential of human bone marrow stem cells (hBMSCs), dental pulp stem cells (hDPSCs), and adipose stem cells (hASCs) was severely impaired after in vitro expansion. To clarify the molecular mechanism underlying this in vitro expansion-related loss of osteogenic capacity in hMSCs, the transcriptome changes following in vitro expansion of these hMSCs were compared. Cysteine-rich secretory protein LCCL domain-containing 2 (CRISPLD2) was identified as the most downregulated gene shared by late passage hBMSCs, hDPSCs, and hASCs. Both the secreted and non-secreted CRISPLD2 proteins progressively declined in hMSCs during in vitro expansion when the cells gradually lost their osteogenic potential. We thus hypothesized that the expression of CRISPLD2 is critical for hMSCs to maintain their osteogenic differentiation potential during in vitro expansion. Our studies showed that the knockdown of CRISPLD2 in early passage hBMSCs inhibited the cells' osteogenic differentiation in a siRNA dose-dependent manner. Transcriptome analysis and immunoblotting indicated that the CRISPLD2 knockdown-induced osteogenesis suppression might be attributed to the downregulation of matrix metallopeptidase 1 (MMP1) and forkhead box Q1 (FOXQ1). Furthermore, adeno-associated virus (AAV)-mediated CRISPLD2 overexpression could somewhat rescue the impaired osteogenic differentiation of hBMSCs during in vitro expansion. These results revealed that the downregulation of CRISPLD2 contributes to the impaired osteogenic differentiation of hMSCs during in vitro expansion. Our findings shed light on understanding the loss of osteogenic differentiation in hMSCs and provide a potential therapeutic target gene for bone-related diseases.


Assuntos
Doenças Ósseas , Células-Tronco Mesenquimais , Humanos , Osteogênese/genética , Células-Tronco Mesenquimais/metabolismo , Diferenciação Celular/genética , RNA Interferente Pequeno/metabolismo , Doenças Ósseas/metabolismo , Células Cultivadas , Fatores de Transcrição Forkhead/metabolismo , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Fatores Reguladores de Interferon/metabolismo
2.
Biomed Pharmacother ; 162: 114677, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37044024

RESUMO

Cyanidin is the most abundant anthocyanin found in red-purple plants and possesses anti-obesity properties. However, its mechanism of action in adipocytes remains unknown. The objective of this study was to elucidate how cyanidin inhibits adipocyte formation in 3T3-L1 preadipocytes. Cells were cultured in adipogenic differentiation medium supplemented with cyanidin and examined for adipogenesis, cell viability, and adipocyte gene expression using Oil Red O staining, MTT assay, and RT-qPCR. Real-time Ca2+ imaging analysis was performed in living cells to elucidate cyanidin's mechanism of action. The results demonstrated that cyanidin (1-50 µM) supplementation to the adipogenic medium inhibited adipogenesis by downregulating adipogenic marker gene expression (PPARγ, C/EBPα, adiponectin, and aP2) without affecting cell viability after 4 days of treatment. Stimulation of cells with cyanidin (30-100 µM) increased intracellular Ca2+ in a concentration dependent manner with peak calcium increases at 50 µM. Pretreatment of cells with the phospholipase C (PLC) inhibitor U73122, inositol triphosphate (IP3) receptor blocker 2-APB, and depletion of endoplasmic reticulum Ca2+ stores by thapsigargin abolished the Ca2+ increases by cyanidin. These findings suggested that cyanidin inhibits adipocyte formation by activating the PLC-IP3 pathway and intracellular Ca2+ signaling. Our study is the first report describing the mechanism underlying the anti-obesity effect of cyanidin.


Assuntos
Adipogenia , Antocianinas , Camundongos , Animais , Antocianinas/farmacologia , Células 3T3-L1 , Fosfolipases Tipo C/metabolismo , Regulação para Baixo , Diferenciação Celular , Obesidade/metabolismo , PPAR gama/metabolismo
3.
Stem Cell Investig ; 10: 3, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36761253

RESUMO

Background: Efficiently delivering nucleic acid into mammalian cells is essential to overexpress genes for assessing gene functions. Human bone marrow stem cells (hBMSCs) are the most studied tissue-derived stem cells. Adeno-associated viruses (AAVs) have been used to deliver DNA into hBMSCs for various purposes. Current literature reported that transduction efficiencies of up to 65% could be achieved by AAV gene delivery into hBMSCs. Further improvement of efficiency is needed and possible. This study tested a selection of AAV serotypes for high-efficient DNA delivery into hBMSCs. Methods: hBMSCs from different donors were infected with different serotypes of AAVs containing the enhanced green fluorescence protein (eGFP) reporter gene driven by the CMV promoter. Green fluorescence was monitored in the infected cells at five-day intervals. Cells were collected at designated time points after the infection for reverse-transcription polymerase chain reaction (RT-PCR) and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) to assess eGFP mRNA transcription. Results: The results indicated that the order of transduction efficiency of the AAV serotypes was AAV2 > AAV2.7m8 > AAV6 > AAV6.2 > AAV1 > AAV-DJ. AAV2 could achieve almost 100% transduction at the multiplicity of infection (MOI) greater than 100K. Over 90% of cells could be transduced at 20K to 50K MOI. About 80% transduction was seen at MOIs of 10K and 15K. RT-PCR analysis showed that eGFP mRNA could be detected from day 5 to day 30 post-AAV infection. The differences in the observed transduction efficiencies of the hBMSCs from different patients indicate donor-to-donor variability, and increased eGFP mRNA was generally seen after day 15 post-AAV2 infection. Maximal eGFP transcription was detected on day 30 post-infection. Conclusions: We conclude that AAV2 and AAV2.7m8 at an MOI of 100K or greater can efficiently deliver transgene into hBMSCs with up to near 100% transduction efficiency for sustained expression over one month. However, donor-to-donor variation exists in transduction efficiency and transgene expression, especially at MOIs less than 100K.

4.
Cells Tissues Organs ; 211(1): 41-56, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34530424

RESUMO

Dental pulp stem cells (DPSCs) possess strong osteogenic differentiation potential and are promising cell sources in regenerative medicine. However, such differentiation capacity progressively declines during their in vitro expansion. MicroRNAs (miRNAs) play important roles in modulating stem cell differentiation. This study aimed (1) to determine if miR-7a-5p and miR-592 are involved in maintaining and regulating osteogenic differentiation of DPSCs, and (2) to explore their potential regulatory pathways. We found that the expression of miR-7a-5p and miR-592 was significantly upregulated during the expansion of rat DPSCs (rDPSCs). Overexpression of these miRNAs inhibited the osteogenic/odontogenic differentiation of rDPSCs, as evidenced by calcium deposition and osteogenic/odontogenic gene expression. RT-qPCR determined that miR-592 could downregulate heat shock protein B8, whose expression is reduced during the expansion of rDPSCs. Furthermore, RNA-seq and bioinformatics analysis identified significant signaling pathways of miR-7a-5p and miR-592 in regulating osteogenic differentiation, including TNF, MAPK, and PI3K-Akt pathways. We conclude that upregulating miR-7a-5p and miR-592 suppresses the osteogenic differentiation of rDPSCs during their in vitro expansion, likely via TNF, MAPK, and PI3K-Akt pathways. The results may shed light on application of miR-7a-5p and miR-592 for maintaining osteo-differentiation potential in stem cells for bone regeneration and bone-related disease treatment.


Assuntos
MicroRNAs , Osteogênese , Animais , Diferenciação Celular/genética , Células Cultivadas , Polpa Dentária , MicroRNAs/genética , MicroRNAs/metabolismo , Osteogênese/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Células-Tronco
5.
Biomed Pharmacother ; 146: 112494, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34891116

RESUMO

Cyanidin-3-rutinoside (C3R) is an anthocyanin with anti-diabetic properties found in red-purple fruits. However, the molecular mechanisms of C3R on Ca2+-dependent insulin secretion remains unknown. This study aimed to identify C3R's mechanisms of action in pancreatic ß-cells. Rat INS-1 cells were used to elucidate the effects of C3R on insulin secretion, intracellular Ca2+ signaling, and gene expression. The results showed that C3R at 60, 100, and 300 µM concentrations significantly increased insulin secretion via intracellular Ca2+ signaling. The exposure of cells with C3R concentrations up to 100 µM did not affect cell viability. Pretreatment of cells with nimodipine (voltage-dependent Ca2+ channel (VDCC) blocker), U73122 (PLC inhibitor), and 2-APB (IP3 receptor blocker) inhibited the intracellular Ca2+ signals by C3R. Interestingly, C3R increased intracellular Ca2+ signals and insulin secretion after depletion of endoplasmic reticulum Ca2+ stores by thapsigargin. However, insulin secretion was abolished under extracellular Ca2+-free conditions. Moreover, C3R upregulated mRNA expression for Glut2 and Kir6.2 genes. These findings indicate that C3R stimulated insulin secretion by promoting Ca2+ influx via VDCCs and activating the PLC-IP3 pathway. C3R also upregulates the expression of genes necessary for glucose-induced insulin secretion. This is the first study describing the molecular mechanisms by which C3R stimulates Ca2+-dependent insulin secretion from pancreatic ß-cells. These findings contribute to our understanding on how anthocyanins improve hyperglycemia in diabetic patients.


Assuntos
Antocianinas/farmacologia , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Animais , Cálcio/metabolismo , Canais de Cálcio Tipo L/genética , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Transportador de Glucose Tipo 2/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Células Secretoras de Insulina/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Ratos , Fosfolipases Tipo C/metabolismo
6.
Proc Natl Acad Sci U S A ; 117(36): 22413-22422, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32839323

RESUMO

Brown and beige adipocytes harbor the thermogenic capacity to adapt to environmental thermal or nutritional changes. Histone methylation is an essential epigenetic modification involved in the modulation of nonshivering thermogenesis in adipocytes. Here, we describe a molecular network leading by KMT5c, a H4K20 methyltransferase, that regulates adipocyte thermogenesis and systemic energy expenditure. The expression of Kmt5c is dramatically induced by a ß3-adrenergic signaling cascade in both brown and beige fat cells. Depleting Kmt5c in adipocytes in vivo leads to a decreased expression of thermogenic genes in both brown and subcutaneous (s.c.) fat tissues. These mice are prone to high-fat-diet-induced obesity and develop glucose intolerance. Enhanced transformation related protein 53 (Trp53) expression in Kmt5c knockout (KO) mice, that is due to the decreased repressive mark H4K20me3 on its proximal promoter, is responsible for the metabolic phenotypes. Together, these findings reveal the physiological role for KMT5c-mediated H4K20 methylation in the maintenance and activation of the thermogenic program in adipocytes.


Assuntos
Adipócitos Bege/fisiologia , Adipócitos Marrons/fisiologia , Histona-Lisina N-Metiltransferase , Termogênese/fisiologia , Proteína Supressora de Tumor p53/metabolismo , Adipócitos Bege/metabolismo , Adipócitos Marrons/metabolismo , Animais , Dieta Hiperlipídica , Feminino , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteína Supressora de Tumor p53/genética
7.
Plant Physiol ; 168(2): 443-51, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25873552

RESUMO

Two major complexes of NADPH dehydrogenase (NDH-1) have been identified in cyanobacteria. A large complex (NDH-1L) contains NdhD1, NdhF1, and NdhP, which are absent in a medium size complex (NDH-1M). They play important roles in respiration, NDH-1-dependent cyclic electron transport around photosystem I, and CO2 uptake. Two mutants sensitive to high light for growth and impaired in cyclic electron transport around photosystem I were isolated from the cyanobacterium Synechocystis sp. strain PCC 6803 transformed with a transposon-bearing library. Both mutants had a tag in an open reading frame encoding a product highly homologous to NdhQ, a single-transmembrane small subunit of the NDH-1L complex, identified in Thermosynechococcus elongatus by proteomics strategy. Deletion of ndhQ disassembled about one-half of the NDH-1L to NDH-1M and consequently impaired respiration, but not CO2 uptake. During prolonged incubation of the thylakoid membrane with n-dodecyl-ß-D-maltoside at room temperature, the rest of the NDH-1L in ΔndhQ was disassembled completely to NDH-1M and was much faster than in the wild type. In the ndhP-deletion mutant (ΔndhP) background, absence of NdhQ almost completely disassembled the NDH-1L to NDH-1M, similar to the results observed in the ΔndhD1/ΔndhD2 mutant. We therefore conclude that both NdhQ and NdhP are essential to stabilize the NDH-1L complex.


Assuntos
NADPH Desidrogenase/metabolismo , Subunidades Proteicas/metabolismo , Synechocystis/enzimologia , Western Blotting , Respiração Celular/efeitos da radiação , Transporte de Elétrons/efeitos da radiação , Estabilidade Enzimática/efeitos da radiação , Deleção de Genes , Processos Heterotróficos/efeitos da radiação , Luz , Modelos Biológicos , Espectrometria de Fluorescência , Synechocystis/crescimento & desenvolvimento , Synechocystis/efeitos da radiação , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA