Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Med ; 106: 102518, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36638707

RESUMO

PURPOSE: Accurate dosimetry is paramount to study the FLASH biological effect since dose and dose rate are critical dosimetric parameters governing its underlying mechanisms. With the goal of assessing the suitability of standard clinical dosimeters in a very-high dose rate (VHDR) experimental setup, we evaluated the ion collection efficiency of several commercially available air-vented ionization chambers (IC) in conventional and VHDR proton irradiation conditions. METHODS: A cyclotron at the Orsay Proton Therapy Center was used to deliver VHDR pencil beam scanning irradiation. Ion recombination correction factors (ks) were determined for several detectors (Advanced Markus, PPC05, Nano Razor, CC01) at the entrance of the plateau and at the Bragg peak, using the Niatel model, the Two-voltage method and Boag's analytical formula for continuous beams. RESULTS: Mean dose rates ranged from 4 Gy/s to 385 Gy/s, and instantaneous dose rates up to 1000 Gy/s were obtained with the experimental set-up. Recombination correction factors below 2 % were obtained for all chambers, except for the Nano Razor, at VHDRs with variations among detectors, while ks values were significantly smaller (0.8 %) for conventional dose rates. CONCLUSIONS: While the collection efficiency of the probed ICs in scanned VHDR proton therapy is comparable to those in the conventional regime with recombination coefficiens smaller than 1 % for mean dose rates up to 177 Gy/s, the reduction in collection efficiency for higher dose rates cannot be ignored when measuring the absorbed dose in pre-clinical proton scanned FLASH experiments and clinical trials.


Assuntos
Terapia com Prótons , Prótons , Radiometria/métodos , Terapia com Prótons/métodos , Ciclotrons , Dosímetros de Radiação
2.
Phys Med Biol ; 66(22)2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34673555

RESUMO

The Orsay Proton therapy Center (ICPO) has a long history of intracranial radiotherapy using both double scattering (DS) and pencil beam scanning (PBS) techniques, and is actively investigating a promising modality of spatially fractionated radiotherapy using proton minibeams (pMBRT). This work provides a comprehensive comparison of the organ-specific secondary neutron dose due to each of these treatment modalities, assessed using Monte Carlo (MC) algorithms and measurements. A MC model of a universal nozzle was benchmarked by comparing the neutron ambient dose equivalent,H*(10), in the gantry room with measurements obtained using a WENDI-II counter. The secondary neutron dose was evaluated for clinically relevant intracranial treatments of patients of different ages, in which secondary neutron doses were scored in anthropomorphic phantoms merged with the patients' images. The MC calculatedH*(10) values showed a reasonable agreement with the measurements and followed the expected tendency, in which PBS yields the lowest dose, followed by pMBRT and DS. Our results for intracranial treatments show that pMBRT yielded a higher secondary neutron dose for organs closer to the target volume, while organs situated furthest from the target volume received a greater quantity of neutrons from the passive scattering beam line. To the best of our knowledge, this is the first study to compare MC secondary neutron dose estimates in clinical treatments between these various proton therapy modalities and to realistically quantify the secondary neutron dose contribution of clinical pMBRT treatments. The method established in this study will enable epidemiological studies of the long-term effects of intracranial treatments at ICPO, notably radiation-induced second malignancies.


Assuntos
Neoplasias Induzidas por Radiação , Terapia com Prótons , Humanos , Método de Monte Carlo , Nêutrons , Imagens de Fantasmas , Terapia com Prótons/métodos , Prótons , Dosagem Radioterapêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA