Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732936

RESUMO

Lung diseases are the third-leading cause of mortality in the world. Due to compromised lung function, respiratory difficulties, and physiological complications, lung disease brought on by toxic substances, pollution, infections, or smoking results in millions of deaths every year. Chest X-ray images pose a challenge for classification due to their visual similarity, leading to confusion among radiologists. To imitate those issues, we created an automated system with a large data hub that contains 17 datasets of chest X-ray images for a total of 71,096, and we aim to classify ten different disease classes. For combining various resources, our large datasets contain noise and annotations, class imbalances, data redundancy, etc. We conducted several image pre-processing techniques to eliminate noise and artifacts from images, such as resizing, de-annotation, CLAHE, and filtering. The elastic deformation augmentation technique also generates a balanced dataset. Then, we developed DeepChestGNN, a novel medical image classification model utilizing a deep convolutional neural network (DCNN) to extract 100 significant deep features indicative of various lung diseases. This model, incorporating Batch Normalization, MaxPooling, and Dropout layers, achieved a remarkable 99.74% accuracy in extensive trials. By combining graph neural networks (GNNs) with feedforward layers, the architecture is very flexible when it comes to working with graph data for accurate lung disease classification. This study highlights the significant impact of combining advanced research with clinical application potential in diagnosing lung diseases, providing an optimal framework for precise and efficient disease identification and classification.


Assuntos
Pneumopatias , Redes Neurais de Computação , Humanos , Pneumopatias/diagnóstico por imagem , Pneumopatias/diagnóstico , Processamento de Imagem Assistida por Computador/métodos , Aprendizado Profundo , Algoritmos , Pulmão/diagnóstico por imagem , Pulmão/patologia
2.
Heliyon ; 9(11): e21703, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027947

RESUMO

Knee Osteoarthritis (KOA) is a leading cause of disability and physical inactivity. It is a degenerative joint disease that affects the cartilage, cushions the bones, and protects them from rubbing against each other during motion. If not treated early, it may lead to knee replacement. In this regard, early diagnosis of KOA is necessary for better treatment. Nevertheless, manual KOA detection is time-consuming and error-prone for large data hubs. In contrast, an automated detection system aids the specialist in diagnosing KOA grades accurately and quickly. So, the main objective of this study is to create an automated decision system that can analyze KOA and classify the severity grades, utilizing the extracted features from segmented X-ray images. In this study, two different datasets were collected from the Mendeley and Kaggle database and combined to generate a large data hub containing five classes: Grade 0 (Healthy), Grade 1 (Doubtful), Grade 2 (Minimal), Grade 3 (Moderate), and Grade 4 (Severe). Several image processing techniques were employed to segment the region of interest (ROI). These included Gradient-weighted Class Activation Mapping (Grad-Cam) to detect the ROI, cropping the ROI portion, applying histogram equalization (HE) to improve contrast, brightness, and image quality, and noise reduction (using Otsu thresholding, inverting the image, and morphological closing). Besides, the focus filtering method was utilized to eliminate unwanted images. Then, six feature sets (morphological, GLCM, statistical, texture, LBP, and proposed features) were generated from segmented ROIs. After evaluating the statistical significance of the features and selection methods, the optimal feature set (prominent six distance features) was selected, and five machine learning (ML) models were employed. Additionally, a decision-making strategy based on the six optimal features is proposed. The XGB model outperformed other models with a 99.46 % accuracy, using six distance features, and the proposed decision-making strategy was validated by testing 30 images.

3.
Biomedicines ; 10(11)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36359355

RESUMO

Heart disease can be life-threatening if not detected and treated at an early stage. The electrocardiogram (ECG) plays a vital role in classifying cardiovascular diseases, and often physicians and medical researchers examine paper-based ECG images for cardiac diagnosis. An automated heart disease prediction system might help to classify heart diseases accurately at an early stage. This study aims to classify cardiac diseases into five classes with paper-based ECG images using a deep learning approach with the highest possible accuracy and the lowest possible time complexity. This research consists of two approaches. In the first approach, five deep learning models, InceptionV3, ResNet50, MobileNetV2, VGG19, and DenseNet201, are employed. In the second approach, an integrated deep learning model (InRes-106) is introduced, combining InceptionV3 and ResNet50. This model is developed as a deep convolutional neural network capable of extracting hidden and high-level features from images. An ablation study is conducted on the proposed model altering several components and hyperparameters, improving the performance even further. Before training the model, several image pre-processing techniques are employed to remove artifacts and enhance the image quality. Our proposed hybrid InRes-106 model performed best with a testing accuracy of 98.34%. The InceptionV3 model acquired a testing accuracy of 90.56%, the ResNet50 89.63%, the DenseNet201 88.94%, the VGG19 87.87%, and the MobileNetV2 achieved 80.56% testing accuracy. The model is trained with a k-fold cross-validation technique with different k values to evaluate the robustness further. Although the dataset contains a limited number of complex ECG images, our proposed approach, based on various image pre-processing techniques, model fine-tuning, and ablation studies, can effectively diagnose cardiac diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA