Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bull Environ Contam Toxicol ; 112(1): 10, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38085362

RESUMO

Pesticides enter non-target surface waters as a result of agricultural activities and may reach water bodies in protected areas. We measured in southwestern Germany pesticide concentrations after heavy rainfalls in streams of a drinking water protection area near Hausen (Freiburg) and in the catchment of the Queich (Landau), which originates from the biosphere reserve Palatinate Forest. On average, 32 (n = 21) and 21 (n = 10) pesticides were detected per sample and event in the area of Hausen (n = 56) and in the Queich catchment (n = 17), respectively. The majority of pesticides detected in > 50% of all samples were fungicides, with fluopyram being detected throughout all samples. Aquatic invertebrates exhibited highest risks with 16.1% of samples exceeding mixture toxicity thresholds, whereas risks were lower for aquatic plants (12.9%) and fish (6.5%). Mixture toxicity threshold exceedances indicate adverse ecological effects to occur at half of sites (50%). This study illustrates the presence of pesticide mixtures and highlights ecological risks for aquatic organisms in surface waters of protected areas in Germany.


Assuntos
Praguicidas , Poluentes Químicos da Água , Animais , Praguicidas/toxicidade , Praguicidas/análise , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Agricultura , Alemanha
2.
Sci Total Environ ; 905: 167080, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37722422

RESUMO

Streams and their riparian areas are important habitats and foraging sites for bats feeding on emergent aquatic insects. Chemical pollutants entering freshwater streams from agricultural and wastewater sources have been shown to alter aquatic insect emergence, yet little is known about how this impacts insectivorous bats in riparian areas. In this study, we investigate the relationships between the presence of wastewater effluent, in-stream pesticide toxicity, the number of emergent and flying aquatic insects, and the activity and hunting behaviour of bats at 14 streams in southwestern Germany. Stream sites were located in riparian forests, sheltered from direct exposure to pollutants from agricultural and urban areas. We focused on three bat species associated with riparian areas: Myotis daubentonii, M. cf. brandtii, and Pipistrellus pipistrellus. We found that streams with higher pesticide toxicity and more frequent detection of wastewater also tended to be warmer and have higher nutrient and lower oxygen concentrations. We did not observe a reduction of insect emergence, bat activity or hunting rates in association with pesticide toxicity and wastewater detections. Instead, the activity and hunting rates of Myotis spp. were higher at more polluted sites. The observed increase in bat hunting at more polluted streams suggests that instead of reduced prey availability, chemical pollution at the levels measured in the present study could expose bats to pollutants transported from the stream by emergent aquatic insects.


Assuntos
Quirópteros , Poluentes Ambientais , Praguicidas , Animais , Insetos , Rios , Águas Residuárias , Comportamento Predatório
3.
J Hazard Mater ; 455: 131635, 2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37196444

RESUMO

Current-use pesticides are ubiquitous in freshwaters globally, often at very low concentrations. Emerging aquatic insects can accumulate pesticides during their aquatic development, which can be retained through their metamorphosis into terrestrial adults. Emerging insects thus provide a potential, yet largely understudied linkage for exposure of terrestrial insectivores to waterborne pesticides. We measured 82 low to moderately lipophilic organic pesticides (logKow: -2.87 to 6.9) in the aquatic environment, emerging insects and web-building riparian spiders from stream sites impacted by agricultural land use. Insecticides, mainly neuro-active neonicotinoids were ubiquitous and had the highest concentrations in emerging insects and spiders (∑ insecticides: 0.1-33 and 1-240 ng/g, respectively), although their concentrations in water were low, even when compared to global levels. Furthermore, neonicotinoids, although not considered to be bioaccumulative, were biomagnified in riparian spiders. In contrast, concentrations of fungicides and most herbicides decreased from the aquatic environment to the spiders. Our results provide evidence for the transfer and accumulation of neonicotinoids across the aquatic-terrestrial ecosystem boundary. This could threaten food webs in ecologically sensitive riparian areas worldwide.


Assuntos
Inseticidas , Praguicidas , Aranhas , Animais , Cadeia Alimentar , Ecossistema , Insetos , Neonicotinoides
4.
Environ Toxicol Chem ; 42(6): 1346-1358, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36946335

RESUMO

Anthropogenic stressors can affect the emergence of aquatic insects. These insects link aquatic and adjacent terrestrial food webs, serving as high-quality subsidy to terrestrial consumers, such as spiders. While previous studies have demonstrated that changes in the emergence biomass and timing may propagate across ecosystem boundaries, the physiological consequences of altered subsidy quality for spiders are largely unknown. We used a model food chain to study the potential effects of subsidy quality: Tetragnatha spp. were exclusively fed with emergent Chironomus riparius cultured in the absence or presence of either copper (Cu), Bacillus thuringiensis var. israelensis (Bti), or a mixture of synthetic pesticides paired with two basal resources (Spirulina vs. TetraMin®) of differing quality in terms of fatty acid (FA) composition. Basal resources shaped the FA profile of chironomids, whereas their effect on the FA profile of spiders decreased, presumably due to the capacity of both chironomids and spiders to modify (dietary) FA. In contrast, aquatic contaminants had negligible effects on prey FA profiles but reduced the content of physiologically important polyunsaturated FAs, such as 20:4n-6 (arachidonic acid) and 20:5n-3 (eicosapentaenoic acid), in spiders by approximately 30% in Cu and Bti treatments. This may have contributed to the statistically significant decline (40%-50%) in spider growth. The observed effects in spiders are likely related to prey nutritional quality because biomass consumption by spiders was, because of our experimental design, constant. Analyses of additional parameters that describe the nutritional quality for consumers such as proteins, carbohydrates, and the retention of contaminants may shed further light on the underlying mechanisms. Our results highlight that aquatic contaminants can affect the physiology of riparian spiders, likely by altering subsidy quality, with potential implications for terrestrial food webs. Environ Toxicol Chem 2023;42:1346-1358. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Ecossistema , Aranhas , Animais , Aranhas/química , Rios/química , Cadeia Alimentar , Insetos
5.
Environ Toxicol Chem ; 42(1): 60-70, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36205389

RESUMO

Exposure of freshwater ecosystems to insecticides can negatively impact the development of emerging aquatic insects. These insects serve as an important nutritional subsidy for terrestrial insectivores. Changes in insect emergence phenology (i.e., emergence success and temporal pattern) or fluxes of insecticides retained by the emerging adults have the potential to negatively impact terrestrial food webs. These processes are influenced by contaminant toxicity, lipohilicity, or metabolic processes. The interplay between emergence phenology, contaminant retention through metamorphosis, and associated contaminant flux is not yet understood for current-use insecticides. In a microcosm study, we evaluated the impacts of a 24-h pulse exposure of one of three current-use insecticides, namely pirimicarb, indoxacarb, and thiacloprid, at two environmentally realistic concentration levels on the larval development and emergence of the nonbiting midge Chironomus riparius. In addition, we measured insecticide concentrations in the larvae and adults using ultrahigh performance liquid chromatography coupled to tandem mass spectrometry by electrospray ionization. Exposure to pirimicarb delayed larval development and emergence, and exposure to indoxacarb reduced emergence success. The neonicotinoid thiacloprid had the greatest impact by reducing larval survival and emergence success. At the same time, thiacloprid was the only insecticide measured in the adults with average concentrations of 10.3 and 37.3 ng/g after exposure at 0.1 and 4 µg/L, respectively. In addition, an approximate 30% higher survival to emergence after exposure to 0.1 µg/L relative to a 4-µg/L exposure resulted in a relatively higher flux of thiacloprid, from the aquatic to the terrestrial environment, at the lower exposure. Our experimental results help to explain the impacts of current-use insecticides on aquatic-terrestrial subsidy coupling and indicate the potential for widespread dietary exposure of terrestrial insectivores preying on emerging aquatic insects to the neonicotinoid thiacloprid. Environ Toxicol Chem 2023;42:60-70. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Chironomidae , Inseticidas , Animais , Inseticidas/toxicidade , Inseticidas/análise , Ecossistema , Neonicotinoides/toxicidade , Insetos , Larva
6.
Environ Sci Technol ; 56(9): 5478-5488, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35441504

RESUMO

Emerging aquatic insects have the potential to retain aquatic contaminants after metamorphosis, potentially transporting them into adjacent terrestrial food webs. It is unknown whether this transfer is also relevant for current-use pesticides. We exposed larvae of the nonbiting midge, Chironomus riparius, to a sublethal pulse of a mixture of nine moderately polar fungicides and herbicides (logKow 2.5-4.7) at three field relevant treatment levels (1.2-2.5, 17.5-35.0, or 50.0-100.0 µg/L). We then assessed the pesticide bioaccumulation and bioamplification over the full aquatic-terrestrial life cycle of both sexes including the egg laying of adult females. By applying sensitive LC-MS/MS analysis to small sample volumes (∼5 mg, dry weight), we detected all pesticides in larvae from all treatment levels (2.8-1019 ng/g), five of the pesticides in the adults from the lowest treatment level and eight in the higher treatment levels (1.5-3615 ng/g). Retention of the pesticides through metamorphosis was not predictable based solely on pesticide lipophilicity. Sex-specific differences in adult insect pesticide concentrations were significant for five of the pesticides, with greater concentrations in females for four of them. Over the duration of the adults' lifespan, pesticide concentrations generally decreased in females while persisting in males. Our results suggest that a low to moderate daily dietary exposure to these pesticides may be possible for tree swallow nestlings and insectivorous bats.


Assuntos
Chironomidae , Praguicidas , Poluentes Químicos da Água , Animais , Cromatografia Líquida , Ecossistema , Feminino , Insetos , Larva , Masculino , Praguicidas/análise , Espectrometria de Massas em Tandem , Poluentes Químicos da Água/análise
7.
Curr Opin Insect Sci ; 50: 100885, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35144033

RESUMO

Metals and organic contaminants in aquatic systems affect the coupling of aquatic and terrestrial ecosystems through two pathways: contaminant-induced effects on insect emergence and emergence-induced contaminant transfer. Consequently, the impact of aquatic contaminants on terrestrial ecosystems can be driven by modifications in the quantity and quality of adult aquatic insects serving as prey or contaminants entering terrestrial food webs as part of the diet of terrestrial predators. Here, we provide an overview of recent advances in the field, separating metals from organic contaminants due to their differential propensity to bioaccumulate and thus their potential contribution to either of the two pathways. Finally, this review highlights the knowledge gap in the relative impact of these pathways on terrestrial insectivores.


Assuntos
Ecossistema , Insetos , Animais , Cadeia Alimentar , Metais
8.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1097-1098: 83-93, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30212730

RESUMO

Volatile organic compounds (VOCs) emanating from the surfaces of human skin are of great interest to researchers in medical and forensic fields, as well as to biologists studying the ecology of blood-feeding insect vectors of human disease. Research involving the comparison of relative abundances of VOCs emanating from human skin is currently limited by the methodology used for sample collection and pre-concentration. The use of in-house developed silicone rubber (polydimethylsiloxane (PDMS)) passive sampling devices constructed in the form of bracelets and anklets was explored to address this need. The easy-to-use samplers were employed as non-invasive passive sampling devices for the non-targeted collection and concentration of volatile human skin emissions prior to thermal desorption thereof coupled with comprehensive gas chromatographic time-of-flight mass spectrometric (GC × GC-TOFMS) analysis. Compounds collected were from a wide range of compound classes. Several compounds, notably cyclic ketones, identified have not been previously reported in skin volatile literature. Comparison of normalized unique mass peak area signals has revealed relative quantitative differences and similarities between the samples collected from two individuals' wrists and as well as between an individual's wrist and ankle. The sampling method was evaluated based on its ability to provide many candidate compounds for potential biomarker discovery. The results show the ability of the new sampling method for augmenting the current knowledge on human skin volatile emissions. The samplers are both easy to use and economical. Applications explored include the study of the complex relationships between the human skin microbiome and the attractiveness of individuals to anthropophilic blood host seeking mosquitoes.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Microbiota/fisiologia , Mosquitos Vetores/fisiologia , Fenômenos Fisiológicos da Pele , Pele/química , Compostos Orgânicos Voláteis/análise , Adulto , Humanos , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA