Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8256, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589552

RESUMO

Yellowfin tuna, Thunnus albacares, represents an important component of commercial and recreational fisheries in the Gulf of Mexico (GoM). We investigated the influence of environmental conditions on the spatiotemporal distribution of yellowfin tuna using fisheries' catch data spanning 2012-2019 within Mexican waters. We implemented hierarchical Bayesian regression models with spatial and temporal random effects and fixed effects of several environmental covariates to predict habitat suitability (HS) for the species. The best model included spatial and interannual anomalies of the absolute dynamic topography of the ocean surface (ADTSA and ADTIA, respectively), bottom depth, and a seasonal cyclical random effect. High catches occurred mainly towards anticyclonic features at bottom depths > 1000 m. The spatial extent of HS was higher in years with positive ADTIA, which implies more anticyclonic activity. The highest values of HS (> 0.7) generally occurred at positive ADTSA in oceanic waters of the central and northern GoM. However, high HS values (> 0.6) were observed in the southern GoM, in waters with cyclonic activity during summer. Our results highlight the importance of mesoscale features for the spatiotemporal distribution of yellowfin tunas and could help to develop dynamic fisheries management strategies in Mexico and the U.S. for this valuable resource.


Assuntos
Ecossistema , Atum , Animais , Golfo do México , Teorema de Bayes , Oceanos e Mares
2.
PLoS One ; 19(3): e0298394, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38451937

RESUMO

Atlantic tarpon (Megalops atlanticus) are capable of long-distance migrations (hundreds of kilometers) but also exhibit resident behaviors in estuarine and coastal habitats. The aim of this study was to characterize the spatial distribution of juvenile tarpon and identify migration pathways of adult tarpon in the northern Gulf of Mexico. Spatial distribution of juvenile tarpon was investigated using gillnet data collected by Texas Parks and Wildlife Department (TPWD) over the past four decades. Generalized additive models (GAMs) indicated that salinity and water temperature played a significant role in tarpon presence, with tarpon occurrences peaking in the fall and increasing over the past four decades in this region. Adult tarpon caught off Texas (n = 40) and Louisiana (n = 4) were tagged with acoustic transmitters to characterize spatial and temporal trends in their movements and migrations. Of the 44 acoustic transmitters deployed, 18 of the individuals were detected (n = 16 west of the Mississippi River Delta and n = 2 east of the Mississippi River Delta). Tarpon tagged west of the Mississippi River Delta off Texas migrated south in the fall and winter into areas of south Texas and potentially into Mexico, while individuals tagged east of the delta migrated into Florida during the same time period, suggesting the presence of two unique migratory contingents or subpopulations in this region. An improved understanding of the habitat requirements and migratory patterns of tarpon inhabiting the Gulf of Mexico is critically needed by resource managers to assess the vulnerability of each contingent to fishing pressure, and this information will guide multi-state and multi-national conservation efforts to rebuild and sustain tarpon populations.


Assuntos
Ecossistema , Peixes , Humanos , Animais , Golfo do México , Animais Selvagens , Movimento
3.
Mol Ecol ; 33(1): e17188, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37921120

RESUMO

The commercially important Atlantic bluefin tuna (Thunnus thynnus), a large migratory fish, has experienced notable recovery aided by accurate resource assessment and effective fisheries management efforts. Traditionally, this species has been perceived as consisting of eastern and western populations, spawning respectively in the Mediterranean Sea and the Gulf of Mexico, with mixing occurring throughout the Atlantic. However, recent studies have challenged this assumption by revealing weak genetic differentiation and identifying a previously unknown spawning ground in the Slope Sea used by Atlantic bluefin tuna of uncertain origin. To further understand the current and past population structure and connectivity of Atlantic bluefin tuna, we have assembled a unique dataset including thousands of genome-wide single-nucleotide polymorphisms (SNPs) from 500 larvae, young of the year and spawning adult samples covering the three spawning grounds and including individuals of other Thunnus species. Our analyses support two weakly differentiated but demographically connected ancestral populations that interbreed in the Slope Sea. Moreover, we also identified signatures of introgression from albacore (Thunnus alalunga) into the Atlantic bluefin tuna genome, exhibiting varied frequencies across spawning areas, indicating strong gene flow from the Mediterranean Sea towards the Slope Sea. We hypothesize that the observed genetic differentiation may be attributed to increased gene flow caused by a recent intensification of westward migration by the eastern population, which could have implications for the genetic diversity and conservation of western populations. Future conservation efforts should consider these findings to address potential genetic homogenization in the species.


Assuntos
Fluxo Gênico , Atum , Animais , Atum/genética , Mar Mediterrâneo , Golfo do México , Oceano Atlântico
4.
Nat Commun ; 14(1): 7379, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012173

RESUMO

Changing environmental temperatures impact the physiological performance of fishes, and consequently their distributions. A mechanistic understanding of the linkages between experienced temperature and the physiological response expressed within complex natural environments is often lacking, hampering efforts to project impacts especially when future conditions exceed previous experience. In this study, we use natural chemical tracers to determine the individual experienced temperatures and expressed field metabolic rates of Atlantic bluefin tuna (Thunnus thynnus) during their first year of life. Our findings reveal that the tuna exhibit a preference for temperatures 2-4 °C lower than those that maximise field metabolic rates, thereby avoiding temperatures warm enough to limit metabolic performance. Based on current IPCC projections, our results indicate that historically-important spawning and nursery grounds for bluefin tuna will become thermally limiting due to warming within the next 50 years. However, limiting global warming to below 2 °C would preserve habitat conditions in the Mediterranean Sea for this species. Our approach, which is based on field observations, provides predictions of animal performance and behaviour that are not constrained by laboratory conditions, and can be extended to any marine teleost species for which otoliths are available.


Assuntos
Ecossistema , Atum , Animais , Atum/fisiologia , Oceano Atlântico , Aquecimento Global , Mar Mediterrâneo
5.
Sci Rep ; 13(1): 16277, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770551

RESUMO

Natural geochemical markers in the otolith of yellowfin tuna (Thunnus albacares) were used to establish nursery-specific signatures for investigating the origin of fish captured in the western Atlantic Ocean (WAO). Two classes of chemical markers (trace elements, stable isotopes) were used to first establish nursery-specific signatures of age-0 yellowfin tuna from four primary production zones in the Atlantic Ocean: Gulf of Mexico, Caribbean Sea, Cape Verde, and Gulf of Guinea. Next, mixture and individual assignment methods were applied to predict the origin of sub-adult and adult yellowfin tuna from two regions in the WAO (Gulf of Mexico, Mid Atlantic Bight) by relating otolith core signatures (corresponding to age-0 period) to baseline signatures of age-0 fish from each nursery. Significant numbers of migrants from Caribbean Sea and eastern Atlantic Ocean (EAO) production zones (Gulf of Guinea, Cape Verde) were detected in the WAO, suggesting that fisheries in this region were subsidized by outside spawning/nursery areas. Contributions from local production (Gulf of Mexico) were also evident in samples from both WAO fisheries, but highly variable from year to year. High levels of mixing by yellowfin tuna from the different production zones and pronounced interannual trends in nursery-specific contribution rates in the WAO emphasize the complex and dynamic nature of this species' stock structure and population connectivity. Given that geographic shifts in distribution across national or political boundaries leads to governance and management challenges, this study highlights the need for temporally resolved estimates of nursery origin to refine assessment models and promote the sustainable harvest of this species.


Assuntos
Migrantes , Atum , Animais , Humanos , Oceano Atlântico , Região do Caribe , Golfo do México
6.
PLoS One ; 17(10): e0275899, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36240134

RESUMO

Understanding biological and environmental factors that influence movement behaviors and population connectivity of highly migratory fishes is essential for cooperative international management and conservation of exploited populations, like bluefin tuna. Pacific bluefin tuna Thunnus orientalis (PBT) spawn in the western Pacific Ocean and then juveniles disperse to foraging grounds across the North Pacific. Several techniques have been used to characterize the distribution and movement of PBT, but few methods can provide complete records across ontogeny from larvae to adult in individual fish. Here, otolith biominerals of large PBT collected from the western, eastern, and south Pacific Ocean, were analyzed for a suite of trace elements across calcified/proteinaceous growth zones to investigate patterns across ontogeny. Three element:Ca ratios, Li:Ca, Mg:Ca, and Mn:Ca displayed enrichment in the otolith core, then decreased to low stable levels after age 1-2 years. Thermal and metabolic physiologies, common diets, or ambient water chemistry likely influenced otolith crystallization, protein content, and elemental incorporation in early life. Although similar patterns were also exhibited for otolith Sr:Ca, Ba:Ca and Zn:Ca in the first year, variability in these elements differed significantly after age-2 and in the otolith edges by capture region, suggesting ocean-specific environmental factors or growth-related physiologies affected otolith mineralization across ontogeny.


Assuntos
Membrana dos Otólitos , Oligoelementos , Animais , Peixes , Membrana dos Otólitos/química , Oceano Pacífico , Oligoelementos/análise , Atum/fisiologia , Água/metabolismo
7.
R Soc Open Sci ; 8(9): 210345, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34540247

RESUMO

Stable isotope compositions of carbon and nitrogen (expressed as δ 13C and δ 15N) from the European common cuttlefish (Sepia officinalis) were measured in order to evaluate the utility of using these natural tracers throughout the Northeast Atlantic Ocean and Mediterranean Sea (NEAO-MS). Mantle tissue was obtained from S. officinalis collected from 11 sampling locations spanning a wide geographical coverage in the NEAO-MS. Significant differences of both δ 13C and δ 15N values were found among S. officinalis samples relative to sampling location. δ 13C values did not show any discernable spatial trends; however, a distinct pattern of lower δ 15N values in the Mediterranean Sea relative to the NEAO existed. Mean δ 15N values of S. officinalis in the Mediterranean Sea averaged 2.5‰ lower than conspecifics collected in the NEAO and showed a decreasing eastward trend within the Mediterranean Sea with the lowest values in the most eastern sampling locations. Results suggest δ 15N may serve as a useful natural tracer for studies on the population structure of S. officinalis as well as other marine organisms throughout the NEAO-MS.

8.
Sci Rep ; 11(1): 14216, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34244525

RESUMO

Geochemical chronologies were constructed from otoliths of adult Pacific bluefin tuna (PBT) to investigate the timing of age-specific egress of juveniles from coastal nurseries in the East China Sea or Sea of Japan to offshore waters of the Pacific Ocean. Element:Ca chronologies were developed for otolith Li, Mg, Mn, Zn, Sr, and Ba, and our assessment focused on the section of the otolith corresponding to the age-0 to age-1 + interval. Next, we applied a common time-series approach to geochemical profiles to identify divergences presumably linked to inshore-offshore migrations. Conspicuous geochemical shifts were detected during the juvenile interval for Mg:Ca, Mn:Ca, and Sr:Ca that were indicative of coastal-offshore transitions or egress generally occurring for individuals approximately 4-6 mo. old, with later departures (6 mo. or older) linked to overwintering being more limited. Changepoints in otolith Ba:Ca profiles were most common in the early age-1 period (ca. 12-16 mo.) and appear associated with entry into upwelling areas such as the California Current Large Marine Ecosystem following trans-Pacific migrations. Natal origin of PBT was also predicted using the early life portion of geochemical profile in relation to a baseline sample comprised of age-0 PBT from the two primary spawning areas in the East China Sea and Sea of Japan. Mixed-stock analysis indicated that the majority (66%) of adult PBT in our sample originated from the East China Sea, but individuals of Sea of Japan origin were also detected in the Ryukyu Archipelago.

9.
J Fish Biol ; 99(2): 354-363, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33751556

RESUMO

Element:Ca ratios in the otolith cores of young-of-the-year (YOY) swordfish, Xiphias gladius, were used as natural tracers to predict the nursery origin of subadult and adult swordfish from three foraging grounds in the North Pacific Ocean (NPO). First, the chemistry of otolith cores (proxy for nursery origin) was used to develop nursery-specific elemental signatures in YOY swordfish. Sagittal otoliths of YOY swordfish were collected from four regional nurseries in the NPO between 2000 and 2005: (1) Central Equatorial North Pacific Ocean (CENPO), (2) Central North Pacific Ocean (CNPO), (3) Eastern Equatorial North Pacific Ocean (EENPO) and (4) Western North Pacific Ocean (WNPO). Calcium (43 Ca), magnesium (24 Mg), strontium (88 Sr) and barium (138 Ba) were quantified in the otolith cores of YOY swordfish using laser ablation inductively coupled plasma mass spectrometry. Univariate tests indicated that three element:Ca ratios (Mg:Ca, Sr:Ca and Ba:Ca) were significantly different among nurseries. Overall classification success of YOY swordfish to their nursery of collection was 72% based on quadratic discriminant analysis. Next, element:Ca ratios in the otolith cores of subadults and adults collected from three foraging grounds where targeted fisheries exist (Hawaii, California and Mexico) were examined to calculate nursery-specific contribution estimates. Mixed-stock analysis indicated that the CENPO nursery contributed the majority of individuals to all three foraging grounds (Hawaii 45.6 ± 13.2%, California 84.6 ± 10.8% and Mexico 64.5 ± 15.9%). The results from this study highlight the importance of the CENPO nursery and provide researchers and fisheries managers with new information on the connectivity of the swordfish population in the NPO.


Assuntos
Pesqueiros , Perciformes , Animais , Membrana dos Otólitos , Oceano Pacífico , Alimentos Marinhos
10.
Biol Lett ; 16(2): 20190878, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32019467

RESUMO

Natal origin of subadult (age-1) Pacific bluefin tuna (PBT, Thunnus orientalis) from the California Current Large Marine Ecosystem (CCLME) was determined using natural tracers in ear stones (otoliths). Age-0 PBT collected from the two known spawning areas in the western Pacific Ocean (East China Sea, Sea of Japan) were used to establish baseline signatures from otolith cores over 4 years (2014-2017) based on a suite of trace elements (Li, Mg, Mn, Sr, Zn and Ba). Distinct chemical signatures existed in the otolith cores of age-0 PBT collected from the two spawning areas, with overall classification accuracy ranging 73-93% by year. Subadult PBT collected in the CCLME over the following 4 years (2015-2018) were then age-class matched to baselines using mixed-stock analysis. Natal origin of trans-Pacific migrants in the CCLME ranged 43-78% from the East China Sea and 22-57% from the Sea of Japan, highlighting the importance of both spawning areas for PBT in the CCLME. This study provides the first estimates on the natal origin of subadult PBT in this ecosystem using otolith chemistry and expands upon the application of these natural tracers for population connectivity studies for this species.


Assuntos
Ecossistema , Atum , Animais , California , China , Japão , Oceano Pacífico
11.
PLoS One ; 14(3): e0213506, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30870449

RESUMO

Habitat shifts that occur during the life cycles of marine fishes influence population connectivity and structure. A generalized additive modeling approach was used to characterize relationships between environmental variables and the relative abundance of red snapper Lutjanus campechanus over unconsolidated substrate on the continental shelf (<150 m) of the U.S. Gulf of Mexico (GoM) at three different life stages: juvenile (age-0, <125 mm FL), sub-adult (age-1-2, 125-300 mm FL), and adult (age-2+, >300 mm FL). Fisheries independent data (2008-2014) were used to develop separate models for both the eastern and western GoM, and final models were used to predict the relative availability of suitable habitat for each life stage across the two regions. Predictor variables included in final models varied by age class and region, with depth, dissolved oxygen, longitude, and distance to artificial structure common to most models. Depth was among the most influential variables in all models, and preferred depth increased with increasing size/age. Regional differences in fish-habitat relationships were also observed, as relative abundance of larger red snapper over unconsolidated substrates was more closely linked to artificial structure in the eastern GoM. The location of predicted high quality habitat for juvenile red snapper was greatest on the inner Texas shelf and a smaller area east of the Mississippi River Delta, suggesting these two areas may represent important nursery grounds for the respective regions. Clear ontogenetic shifts in the spatial distribution of predicted high quality habitat were evident in both the eastern (expansion from west to east with age) and western (shift from inshore to offshore) GoM. Given the unique population dynamics between the eastern and western GoM, improving our understanding of spatial and temporal variability in habitat quality may be important to maintaining connectivity between juvenile and adult habitats, and may enhance recovery and management of red snapper stocks in the GoM.


Assuntos
Perciformes/fisiologia , Animais , Ecossistema , Golfo do México , Dinâmica Populacional
12.
Sci Rep ; 9(1): 1663, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30733508

RESUMO

The timing and extent of international crossings by billfishes, tunas, and sharks in the Cuba-Mexico-United States (U.S.) triangle was investigated using electronic tagging data from eight species that resulted in >22,000 tracking days. Transnational movements of these highly mobile marine predators were pronounced with varying levels of bi- or tri-national population connectivity displayed by each species. Billfishes and tunas moved throughout the Gulf of Mexico and all species investigated (blue marlin, white marlin, Atlantic bluefin tuna, yellowfin tuna) frequently crossed international boundaries and entered the territorial waters of Cuba and/or Mexico. Certain sharks (tiger shark, scalloped hammerhead) displayed prolonged periods of residency in U.S. waters with more limited displacements, while whale sharks and to a lesser degree shortfin mako moved through multiple jurisdictions. The spatial extent of associated movements was generally associated with their differential use of coastal and open ocean pelagic ecosystems. Species with the majority of daily positions in oceanic waters off the continental shelf showed the greatest tendency for transnational movements and typically traveled farther from initial tagging locations. Several species converged on a common seasonal movement pattern between territorial waters of the U.S. (summer) and Mexico (winter).


Assuntos
Migração Animal/fisiologia , Ecossistema , Perciformes/fisiologia , Dinâmica Populacional , Tubarões/fisiologia , Atum/fisiologia , Animais , Cuba , México , Oceanos e Mares , Estados Unidos
13.
PLoS One ; 13(10): e0203873, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30278043

RESUMO

The feeding ecology of two reef fishes associated with artificial reefs in the northwest Gulf of Mexico (GoM) was examined using gut contents and natural stable isotopes. Reefs were divided into three regions (east, central, west) across an east to west gradient of increasing reef complexity and salinity. Gray triggerfish (Balistes capriscus) primarily consumed reef-associated prey (xanthid crabs, bivalves, barnacles) and pelagic gastropods, while red snapper (Lutjanus campechanus) diets were mainly comprised of non-reef prey (stomatopods, fishes, portunid crabs). Natural stable isotopes of carbon (δ13C), nitrogen (δ15N), and sulfur (δ34S) were measured in consumer muscle tissue as well as potential primary producers. Gray triggerfish occupied a lower trophic position than red snapper, with lower δ13C and δ15N values across all size classes and regions, and generally higher δ34S values. Red snapper had a smaller range of stable isotope values and corrected standard ellipse areas across all size classes and regions, indicating a smaller isotopic niche. Contribution estimates of particulate organic matter (26 to 54%) and benthic microalgae (BMA, 47 to 74%) for both species were similar, with BMA contributions greater across all three size classes (juveniles, sub-adults, adults) of red snapper and all but the juvenile size class for gray triggerfish. Species gut contents and stable isotopes differed by region, with fishes consuming more crabs in the east region and more gastropods in the central and west regions. δ13C and δ15N values generally decreased from east to west, while δ34S increased across this gradient. Results highlight species-specific feeding differences associated with artificial reefs, where gray triggerfish may be more dependent on the reef structure for foraging opportunities. In addition, results offer further information on the integral role of BMA in primary production at nearshore artificial reefs.


Assuntos
Ração Animal/análise , Isótopos de Carbono/análise , Peixes/fisiologia , Isótopos de Nitrogênio/análise , Isótopos de Enxofre/análise , Animais , Ecossistema , Peixes/classificação , Cadeia Alimentar , Golfo do México , Marcação por Isótopo , Comportamento Predatório , Especificidade da Espécie
14.
PLoS One ; 10(10): e0141101, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26484541

RESUMO

For centuries, the mechanisms surrounding spatially complex animal migrations have intrigued scientists and the public. We present a new methodology using ocean heat content (OHC), a habitat metric that is normally a fundamental part of hurricane intensity forecasting, to estimate movements and migration of satellite-tagged marine fishes. Previous satellite-tagging research of fishes using archival depth, temperature and light data for geolocations have been too coarse to resolve detailed ocean habitat utilization. We combined tag data with OHC estimated from ocean circulation and transport models in an optimization framework that substantially improved geolocation accuracy over SST-based tracks. The OHC-based movement track provided the first quantitative evidence that many of the tagged highly migratory fishes displayed affinities for ocean fronts and eddies. The OHC method provides a new quantitative tool for studying dynamic use of ocean habitats, migration processes and responses to environmental changes by fishes, and further, improves ocean animal tracking and extends satellite-based animal tracking data for other potential physical, ecological, and fisheries applications.


Assuntos
Migração Animal/fisiologia , Ecossistema , Peixes/fisiologia , Temperatura Alta , Animais , Oceanos e Mares , Dinâmica Populacional , Tecnologia de Sensoriamento Remoto
15.
PLoS One ; 10(9): e0138230, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26375709

RESUMO

Mesoscale circulation generated by the Loop Current in the Northern Gulf of Mexico (NGOM) delivers growth-limiting nutrients to the microbial plankton of the euphotic zone. Consequences of physicochemically driven community shifts on higher order consumers and subsequent impacts on the biological carbon pump remain poorly understood. This study evaluates microbial plankton <10 µm abundance and community structure across both cyclonic and anti-cyclonic circulation features in the NGOM using flow cytometry (SYBR Green I and autofluorescence parameters). Non-parametric multivariate hierarchical cluster analyses indicated that significant spatial variability in community structure exists such that stations that clustered together were defined as having a specific 'microbial signature' (i.e. statistically homogeneous community structure profiles based on relative abundance of microbial groups). Salinity and a combination of sea surface height anomaly and sea surface temperature were determined by distance based linear modeling to be abiotic predictor variables significantly correlated to changes in microbial signatures. Correlations between increased microbial abundance and availability of nitrogen suggest nitrogen-limitation of microbial plankton in this open ocean area. Regions of combined coastal water entrainment and mesoscale convergence corresponded to increased heterotrophic prokaryote abundance relative to autotrophic plankton. The results provide an initial assessment of how mesoscale circulation potentially influences microbial plankton abundance and community structure in the NGOM.


Assuntos
Biodiversidade , Plâncton/classificação , Plâncton/microbiologia , Água do Mar/microbiologia , Ciclo do Carbono , Golfo do México , Oceanografia , Plâncton/crescimento & desenvolvimento , Dinâmica Populacional , Microbiologia da Água
16.
PLoS One ; 8(10): e76080, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24130759

RESUMO

Time-series data collected over a four-year period were used to characterize patterns of abundance for pelagic fishes in the northern Gulf of Mexico (GoM) before (2007-2009) and after (2010) the Deepwater Horizon oil spill. Four numerically dominant pelagic species (blackfin tuna, blue marlin, dolphinfish, and sailfish) were included in our assessment, and larval density of each species was lower in 2010 than any of the three years prior to the oil spill, although larval abundance in 2010 was often statistically similar to other years surveyed. To assess potential overlap between suitable habitat of pelagic fish larvae and surface oil, generalized additive models (GAMs) were developed to evaluate the influence of ocean conditions on the abundance of larvae from 2007-2009. Explanatory variables from GAMs were then linked to environmental data from 2010 to predict the probability of occurrence for each species. The spatial extent of surface oil overlapped with early life habitat of each species, possibly indicating that the availability of high quality habitat was affected by the DH oil spill. Shifts in the distribution of spawning adults is another factor known to influence the abundance of larvae, and the spatial occurrence of a model pelagic predator (blue marlin) was characterized over the same four-year period using electronic tags. The spatial extent of oil coincided with areas used by adult blue marlin from 2007-2009, and the occurrence of blue marlin in areas impacted by the DH oil spill was lower in 2010 relative to pre-spill years.


Assuntos
Ecossistema , Peixes , Animais , Golfo do México , Poluição por Petróleo/efeitos adversos
17.
PLoS One ; 7(4): e34180, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22509277

RESUMO

Ichthyoplankton surveys were conducted in surface waters of the northern Gulf of Mexico (NGoM) over a three-year period (2006-2008) to determine the relative value of this region as early life habitat of sailfish (Istiophorus platypterus), blue marlin (Makaira nigricans), white marlin (Kajikia albida), and swordfish (Xiphias gladius). Sailfish were the dominant billfish collected in summer surveys, and larvae were present at 37.5% of the stations sampled. Blue marlin and white marlin larvae were present at 25.0% and 4.6% of the stations sampled, respectively, while swordfish occurred at 17.2% of the stations. Areas of peak production were detected and maximum density estimates for sailfish (22.09 larvae 1000 m(-2)) were significantly higher than the three other species: blue marlin (9.62 larvae 1000 m(-2)), white marlin (5.44 larvae 1000 m(-2)), and swordfish (4.67 larvae 1000 m(-2)). The distribution and abundance of billfish and swordfish larvae varied spatially and temporally, and several environmental variables (sea surface temperature, salinity, sea surface height, distance to the Loop Current, current velocity, water depth, and Sargassum biomass) were deemed to be influential variables in generalized additive models (GAMs). Mesoscale features in the NGoM affected the distribution and abundance of billfish and swordfish larvae, with densities typically higher in frontal zones or areas proximal to the Loop Current. Habitat suitability of all four species was strongly linked to physicochemical attributes of the water masses they inhabited, and observed abundance was higher in slope waters with lower sea surface temperature and higher salinity. Our results highlight the value of the NGoM as early life habitat of billfishes and swordfish, and represent valuable baseline data for evaluating anthropogenic effects (i.e., Deepwater Horizon oil spill) on the Atlantic billfish and swordfish populations.


Assuntos
Ecossistema , Perciformes , Animais , Golfo do México , Larva/classificação , Modelos Teóricos , Perciformes/classificação , Água do Mar , Fatores de Tempo
18.
Science ; 322(5902): 742-4, 2008 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-18832611

RESUMO

Atlantic bluefin tuna populations are in steep decline, and an improved understanding of connectivity between individuals from eastern (Mediterranean Sea) and western (Gulf of Mexico) spawning areas is needed to manage remaining fisheries. Chemical signatures in the otoliths of yearlings from regional nurseries were distinct and served as natural tags to assess natal homing and mixing. Adults showed high rates of natal homing to both eastern and western spawning areas. Trans-Atlantic movement (east to west) was significant and size-dependent, with individuals of Mediterranean origin mixing with the western population in the U.S. Atlantic. The largest (oldest) bluefin tuna collected near the northern extent of their range in North American waters were almost exclusively of western origin, indicating that this region represents critical habitat for the western population.


Assuntos
Migração Animal , Comportamento de Retorno ao Território Vital , Atum/fisiologia , Animais , Oceano Atlântico , Isótopos de Carbono/análise , Ecossistema , Pesqueiros , Funções Verossimilhança , Mar Mediterrâneo , Membrana dos Otólitos/química , Isótopos de Oxigênio/análise , Densidade Demográfica , Dinâmica Populacional , Reprodução , Atum/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA