Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38586035

RESUMO

Collagen VI-related disorders (COL6-RDs) are a group of rare muscular dystrophies caused by pathogenic variants in collagen VI genes (COL6A1, COL6A2, and COL6A3). Collagen type VI is a heterotrimeric, microfibrillar component of the muscle extracellular matrix (ECM), predominantly secreted by resident fibroadipogenic precursor cells in skeletal muscle. The absence or mislocalizatoion of collagen VI in the ECM underlies the non-cell autonomous dysfunction and dystrophic changes in skeletal muscle with an as of yet elusive direct mechanistic link between the ECM and myofiber dysfunction. Here, we conduct a comprehensive natural history and outcome study in a novel mouse model of COL6-RDs (Col6a2-/- mice) using standardized (Treat-NMD) functional, histological, and physiologic parameter. Notably, we identify a conspicuous dysregulation of the TGFß pathway early in the disease process and propose that the collagen VI deficient matrix is not capable of regulating the dynamic TGFß bioavailability at baseline and also in response to muscle injury. Thus, we propose a new mechanism for pathogenesis of the disease that links the ECM regulation of TGFß with downstream skeletal muscle abnormalities, paving the way for developing and validating therapeutics that target this pathway.

2.
Sci Rep ; 10(1): 13749, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32792616

RESUMO

Type VI collagen is well known for its role in muscular disorders, however its function in bone is still not well understood. To examine its role in bone we analyzed femoral and vertebral bone mass by micro-computed tomography analysis, which showed lower bone volume/total volume and trabecular number in Col6α2-KO mice compared with WT. Dynamic histomorphometry showed no differences in trabecular bone formation between WT and Col6α2-KO mice based on the mineral appositional rate, bone formation rate, and mineralizing perimeter. Femoral sections were assessed for the abundance of Tartrate Resistant Acid Phosphatase-positive osteoclasts, which revealed that mutant mice had more osteoclasts compared with WT mice, indicating that the primary effect of Col6a2 deficiency is on osteoclastogenesis. When bone marrow stromal cells (BMSCs) from WT and Col6α2-KO mice were treated with rmTNFα protein, the Col6α2-KO cells expressed higher levels of TNFα mRNA compared with WT cells. This was accompanied by higher levels of p-p65, a down-stream target of TNFα, suggesting that BMSCs from Col6α2-KO mice are highly sensitive to TNFα signaling. Taken together, our data imply that Col6a2 deficiency causes trabecular bone loss by enhancing osteoclast differentiation through enhanced TNFα signaling.


Assuntos
Osso Esponjoso/crescimento & desenvolvimento , Osso Esponjoso/patologia , Colágeno Tipo VI/genética , Osteogênese/genética , Fator de Necrose Tumoral alfa/metabolismo , Animais , Densidade Óssea/genética , Reabsorção Óssea/genética , Reabsorção Óssea/patologia , Linhagem Celular , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoclastos/citologia , Osteogênese/fisiologia , Células RAW 264.7 , Transdução de Sinais , Células Estromais/metabolismo , Fator de Transcrição RelA/metabolismo , Microtomografia por Raio-X
3.
Ann Neurol ; 88(2): 332-347, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32403198

RESUMO

OBJECTIVE: A hitherto undescribed phenotype of early onset muscular dystrophy associated with sensorineural hearing loss and primary ovarian insufficiency was initially identified in 2 siblings and in subsequent patients with a similar constellation of findings. The goal of this study was to understand the genetic and molecular etiology of this condition. METHODS: We applied whole exome sequencing (WES) superimposed on shared haplotype regions to identify the initial biallelic variants in GGPS1 followed by GGPS1 Sanger sequencing or WES in 5 additional families with the same phenotype. Molecular modeling, biochemical analysis, laser membrane injury assay, and the generation of a Y259C knock-in mouse were done. RESULTS: A total of 11 patients in 6 families carrying 5 different biallelic pathogenic variants in specific domains of GGPS1 were identified. GGPS1 encodes geranylgeranyl diphosphate synthase in the mevalonate/isoprenoid pathway, which catalyzes the synthesis of geranylgeranyl pyrophosphate, the lipid precursor of geranylgeranylated proteins including small guanosine triphosphatases. In addition to proximal weakness, all but one patient presented with congenital sensorineural hearing loss, and all postpubertal females had primary ovarian insufficiency. Muscle histology was dystrophic, with ultrastructural evidence of autophagic material and large mitochondria in the most severe cases. There was delayed membrane healing after laser injury in patient-derived myogenic cells, and a knock-in mouse of one of the mutations (Y259C) resulted in prenatal lethality. INTERPRETATION: The identification of specific GGPS1 mutations defines the cause of a unique form of muscular dystrophy with hearing loss and ovarian insufficiency and points to a novel pathway for this clinical constellation. ANN NEUROL 2020;88:332-347.


Assuntos
Dimetilaliltranstransferase/genética , Farnesiltranstransferase/genética , Geraniltranstransferase/genética , Perda Auditiva/genética , Distrofias Musculares/genética , Mutação/genética , Insuficiência Ovariana Primária/genética , Adolescente , Adulto , Animais , Feminino , Técnicas de Introdução de Genes/métodos , Perda Auditiva/diagnóstico por imagem , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Distrofias Musculares/diagnóstico por imagem , Linhagem , Insuficiência Ovariana Primária/diagnóstico por imagem , Estrutura Secundária de Proteína , Análise de Sequência de DNA/métodos , Sequenciamento do Exoma/métodos , Adulto Jovem
4.
JAMA Neurol ; 72(6): 689-98, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25938801

RESUMO

IMPORTANCE: New genomic strategies can now be applied to identify a diagnosis in patients and families with previously undiagnosed rare genetic conditions. The large family evaluated in the present study was described in 1966 and now expands the phenotype of a known neuromuscular gene. OBJECTIVE: To determine the genetic cause of a slowly progressive, autosomal dominant, scapuloperoneal neuromuscular disorder by using linkage and exome sequencing. DESIGN, SETTING, AND PARTICIPANTS: Fourteen affected individuals in a 6-generation family with a progressive scapuloperoneal disorder were evaluated. Participants were examined at pediatric, neuromuscular, and research clinics from March 1, 2005, to May 31, 2014. Exome and linkage were performed in genetics laboratories of research institutions. MAIN OUTCOMES AND MEASURES: Examination and evaluation by magnetic resonance imaging, ultrasonography, electrodiagnostic studies, and muscle biopsies (n = 3). Genetic analysis included linkage analysis (n = 17) with exome sequencing (n = 7). RESULTS: Clinical findings included progressive muscle weakness in an initially scapuloperoneal and distal distribution, including wrist extensor weakness, finger and foot drop, scapular winging, mild facial weakness, Achilles tendon contractures, and diminished or absent deep tendon reflexes. Both age at onset and progression of the disease showed clinical variability within the family. Muscle biopsy specimens demonstrated type I fiber atrophy and trabeculated fibers without nemaline rods. Analysis of exome sequences within the linkage region (4.8 megabases) revealed missense mutation c.591C>A p.Glu197Asp in a highly conserved residue in exon 4 of ACTA1. The mutation cosegregated with disease in all tested individuals and was not present in unaffected individuals. CONCLUSIONS AND RELEVANCE: This family defines a new scapuloperoneal phenotype associated with an ACTA1 mutation. A highly conserved protein, ACTA1 is implicated in multiple muscle diseases, including nemaline myopathy, actin aggregate myopathy, fiber-type disproportion, and rod-core myopathy. To our knowledge, mutations in Glu197 have not been reported previously. This residue is highly conserved and located in an exposed position in the protein; the mutation affects the intermolecular and intramolecular electrostatic interactions as shown by structural modeling. The mutation in this residue does not appear to lead to rod formation or actin accumulation in vitro or in vivo, suggesting a different molecular mechanism from that of other ACTA1 diseases.


Assuntos
Actinas/genética , Distrofia Muscular de Emery-Dreifuss/genética , Distrofia Muscular de Emery-Dreifuss/fisiopatologia , Adulto , Idade de Início , Criança , Progressão da Doença , Exoma/genética , Ligação Genética , Humanos , Masculino , Distrofia Muscular de Emery-Dreifuss/patologia , Mutação de Sentido Incorreto/genética , Miopatias da Nemalina , Linhagem , Fenótipo
5.
Am J Pathol ; 180(4): 1593-602, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22322301

RESUMO

Merosin-deficient congenital muscular dystrophy type 1A (MDC1A) is a lethal muscle-wasting disease that is caused by mutations in the LAMA2 gene, resulting in the loss of laminin-α2 protein. MDC1A patients exhibit severe muscle weakness from birth, are confined to a wheelchair, require ventilator assistance, and have reduced life expectancy. There are currently no effective treatments or cures for MDC1A. Laminin-α2 is required for the formation of heterotrimeric laminin-211 (ie, α2, ß1, and γ1) and laminin-221 (ie, α2, ß2, and γ1), which are major constituents of skeletal muscle basal lamina. Laminin-111 (ie, α1, ß1, and γ1) is the predominant laminin isoform in embryonic skeletal muscle and supports normal skeletal muscle development in laminin-α2-deficient muscle but is absent from adult skeletal muscle. In this study, we determined whether treatment with Engelbreth-Holm-Swarm-derived mouse laminin-111 protein could rescue MDC1A in the dy(W-/-) mouse model. We demonstrate that laminin-111 protein systemically delivered to the muscles of laminin-α2-deficient mice prevents muscle pathology, improves muscle strength, and dramatically increases life expectancy. Laminin-111 also prevented apoptosis in laminin-α2-deficient mouse muscle and primary human MDC1A myogenic cells, which indicates a conserved mechanism of action and cross-reactivity between species. Our results demonstrate that laminin-111 can serve as an effective protein substitution therapy for the treatment of muscular dystrophy in the dy(W-/-) mouse model and establish the potential for its use in the treatment of MDC1A.


Assuntos
Laminina/uso terapêutico , Distrofias Musculares/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Fibrose , Humanos , Injeções Intramusculares , Injeções Intraperitoneais , Estimativa de Kaplan-Meier , Laminina/administração & dosagem , Laminina/deficiência , Laminina/metabolismo , Camundongos , Atividade Motora/efeitos dos fármacos , Força Muscular/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Distrofias Musculares/metabolismo , Distrofias Musculares/patologia , Distrofias Musculares/fisiopatologia , Mioblastos/efeitos dos fármacos , Mioblastos/patologia , Miosite/prevenção & controle , Isoformas de Proteínas/administração & dosagem , Isoformas de Proteínas/uso terapêutico , Redução de Peso/efeitos dos fármacos
6.
J Cell Sci ; 124(Pt 13): 2287-97, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21652631

RESUMO

Merosin-deficient congenital muscular dystrophy 1A (MDC1A) is a devastating neuromuscular disease that results in children being confined to a wheelchair, requiring ventilator assistance to breathe and premature death. MDC1A is caused by mutations in the LAMA2 gene, which results in the partial or complete loss of laminin-211 and laminin-221, the major laminin isoforms found in the basal lamina of skeletal muscle. MDC1A patients exhibit reduced α7ß1 integrin; however, it is unclear how the secondary loss of α7ß1 integrin contributes to MDC1A disease progression. To investigate whether restoring α7 integrin expression can alleviate the myopathic phenotype observed in MDC1A, we produced transgenic mice that overexpressed the α7 integrin in the skeletal muscle of the dy(W⁻/⁻) mouse model of MDC1A. Enhanced expression of the α7 integrin restored sarcolemmal localization of the α7ß1 integrin to laminin-α2-deficient myofibers, changed the composition of the muscle extracellular matrix, reduced muscle pathology, maintained muscle strength and function and improved the life expectancy of dy(W⁻/⁻) mice. Taken together, these results indicate that enhanced expression of α7 integrin prevents muscle disease progression through augmentation and/or stabilization of the existing extracellular matrix in laminin-α2-deficient mice, and strategies that increase α7 integrin in muscle might provide an innovative approach for the treatment of MDC1A.


Assuntos
Antígenos CD/biossíntese , Cadeias alfa de Integrinas/biossíntese , Laminina/metabolismo , Distrofia Muscular Animal/metabolismo , Animais , Progressão da Doença , Matriz Extracelular/metabolismo , Imunofluorescência , Cadeias alfa de Integrinas/deficiência , Laminina/deficiência , Laminina/genética , Camundongos , Camundongos Transgênicos , Força Muscular , Músculo Esquelético/patologia , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Distrofia Muscular Animal/patologia , Distrofia Muscular Animal/fisiopatologia , Reação em Cadeia da Polimerase
7.
Am J Pathol ; 175(4): 1545-54, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19729483

RESUMO

The alpha7beta1 integrin, dystrophin, and utrophin glycoprotein complexes are the major laminin receptors in skeletal muscle. Loss of dystrophin causes Duchenne muscular dystrophy, a lethal muscle wasting disease. Duchenne muscular dystrophy-affected muscle exhibits increased expression of alpha7beta1 integrin and utrophin, which suggests that these laminin binding complexes may act as surrogates in the absence of dystrophin. Indeed, mice that lack dystrophin and alpha7 integrin (mdx/alpha7(-/-)), or dystrophin and utrophin (mdx/utr(-/-)), exhibit severe muscle pathology and die prematurely. To explore the contribution of the alpha7beta1 integrin and utrophin to muscle integrity and function, we generated mice lacking both alpha7 integrin and utrophin. Surprisingly, mice that lack both alpha7 integrin and utrophin (alpha7/utr(-/-)) were viable and fertile. However, these mice had partial embryonic lethality and mild muscle pathology, similar to alpha7 integrin-deficient mice. Dystrophin levels were increased 1.4-fold in alpha7/utr(-/-) skeletal muscle and were enriched at neuromuscular junctions. Ultrastructural analysis revealed abnormal myotendinous junctions, and functional tests showed a ninefold reduction in endurance and 1.6-fold decrease in muscle strength in these mice. The alpha7/utr(-/-) mouse, therefore, demonstrates the critical roles of alpha7 integrin and utrophin in maintaining myotendinous junction structure and enabling force transmission during muscle contraction. Together, these results indicate that the alpha7beta1 integrin, dystrophin, and utrophin complexes act in a concerted manner to maintain the structural and functional integrity of skeletal muscle.


Assuntos
Cadeias alfa de Integrinas/deficiência , Músculos/patologia , Músculos/fisiopatologia , Tendões/patologia , Utrofina/deficiência , Animais , Antígenos CD/metabolismo , Fenômenos Biomecânicos , Cruzamentos Genéticos , Distrofina/metabolismo , Perda do Embrião/patologia , Feminino , Fertilidade , Padrões de Herança/genética , Cadeias alfa de Integrinas/metabolismo , Masculino , Camundongos , Camundongos Knockout , Força Muscular/fisiologia , Junção Neuromuscular/metabolismo , Fenótipo , Receptores de Laminina/metabolismo , Sarcolema/metabolismo , Sarcolema/patologia , Utrofina/metabolismo , Aumento de Peso
8.
Proc Natl Acad Sci U S A ; 106(19): 7991-6, 2009 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-19416897

RESUMO

Duchenne muscular dystrophy (DMD) is a devastating neuromuscular disease caused by mutations in the gene encoding dystrophin. Loss of dystrophin results in reduced sarcolemmal integrity and increased susceptibility to muscle damage. The alpha(7)beta(1)-integrin is a laminin-binding protein up-regulated in the skeletal muscle of DMD patients and in the mdx mouse model. Transgenic overexpression of the alpha(7)-integrin alleviates muscle disease in dystrophic mice, making this gene a target for pharmacological intervention. Studies suggest laminin may regulate alpha(7)-integrin expression. To test this hypothesis, mouse and human myoblasts were treated with laminin and assayed for alpha(7)-integrin expression. We show that laminin-111 (alpha(1), beta(1), gamma(1)), which is expressed during embryonic development but absent in normal or dystrophic skeletal muscle, increased alpha(7)-integrin expression in mouse and DMD patient myoblasts. Injection of laminin-111 protein into the mdx mouse model of DMD increased expression of alpha(7)-integrin, stabilized the sarcolemma, restored serum creatine kinase to wild-type levels, and protected muscle from exercised-induced damage. These findings demonstrate that laminin-111 is a highly potent therapeutic agent for the mdx mouse model of DMD and represents a paradigm for the systemic delivery of extracellular matrix proteins as therapies for genetic diseases.


Assuntos
Antígenos CD/genética , Cadeias alfa de Integrinas/genética , Laminina/genética , Laminina/fisiologia , Distrofia Muscular de Duchenne/genética , Animais , Antígenos CD/metabolismo , Separação Celular , Creatina Quinase/sangue , Matriz Extracelular/metabolismo , Humanos , Cadeias alfa de Integrinas/metabolismo , Laminina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Camundongos Transgênicos , Modelos Biológicos , Músculos/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Regiões Promotoras Genéticas
9.
Am J Pathol ; 174(1): 256-64, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19074617

RESUMO

Mutations in the alpha7 integrin gene cause congenital myopathy characterized by delayed developmental milestones and impaired mobility. Previous studies in dystrophic mice suggest the alpha7beta1 integrin may be critical for muscle repair. To investigate the role that alpha7beta1 integrin plays in muscle regeneration, cardiotoxin was used to induce damage in the tibialis anterior muscle of alpha7 integrin-null mice. Unlike wild-type muscle, which responded rapidly to repair damaged myofibers, alpha7 integrin-deficient muscle exhibited defective regeneration. Analysis of Pax7 and MyoD expression revealed a profound delay in satellite cell activation after cardiotoxin treatment in alpha7 integrin-null animals when compared with wild type. We have recently demonstrated that the muscle of alpha7 integrin-null mice exhibits reduced laminin-alpha2 expression. To test the hypothesis that loss of laminin contributes to the defective muscle regeneration phenotype observed in alpha7 integrin-null mice, mouse laminin-111 (alpha1, beta1, gamma1) protein was injected into the tibialis anterior muscle 3 days before cardiotoxin-induced injury. The injected laminin-111 protein infiltrated the entire muscle and restored myogenic repair and muscle regeneration in alpha7 integrin-null muscle to wild-type levels. Our data demonstrate a critical role for a laminin-rich microenvironment in muscle repair and suggest laminin- 111 protein may serve as an unexpected and novel therapeutic agent for patients with congenital myopathies.


Assuntos
Cadeias alfa de Integrinas/deficiência , Laminina/metabolismo , Músculo Esquelético/fisiologia , Miopatias Congênitas Estruturais/metabolismo , Regeneração/fisiologia , Animais , Cardiotoxinas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Modelos Animais de Doenças , Imunofluorescência , Masculino , Camundongos , Camundongos Transgênicos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Miopatias Congênitas Estruturais/patologia , Regeneração/efeitos dos fármacos , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/efeitos dos fármacos , Células Satélites de Músculo Esquelético/metabolismo
10.
J Cell Sci ; 119(Pt 11): 2185-95, 2006 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-16684813

RESUMO

The dystrophin glycoprotein complex links laminin in the extracellular matrix to the cell cytoskeleton. Loss of dystrophin causes Duchenne muscular dystrophy, the most common human X-chromosome-linked genetic disease. The alpha7beta1 integrin is a second transmembrane laminin receptor expressed in skeletal muscle. Mutations in the alpha7 integrin gene cause congenital myopathy in humans and mice. The alpha7beta1 integrin is increased in the skeletal muscle of Duchenne muscular dystrophy patients and mdx mice. This observation has led to the suggestion that dystrophin and alpha7beta1 integrin have complementary functional and structural roles. To test this hypothesis, we generated mice lacking both dystrophin and alpha7 integrin (mdx/alpha7(-/-)). The mdx/alpha7(-/-) mice developed early-onset muscular dystrophy and died at 2-4 weeks of age. Muscle fibers from mdx/alpha7(-/-) mice exhibited extensive loss of membrane integrity, increased centrally located nuclei and inflammatory cell infiltrate, greater necrosis and increased muscle degeneration compared to mdx or alpha7-integrin null animals. In addition, loss of dystrophin and/or alpha7 integrin resulted in altered expression of laminin-alpha2 chain. These results point to complementary roles for dystrophin and alpha7beta1 integrin in maintaining the functional integrity of skeletal muscle.


Assuntos
Distrofina/deficiência , Cadeias alfa de Integrinas/deficiência , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/patologia , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Distrofina/genética , Distrofina/metabolismo , Cadeias alfa de Integrinas/genética , Cadeias alfa de Integrinas/metabolismo , Laminina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/metabolismo , Músculo Esquelético/ultraestrutura , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Regeneração , Índice de Gravidade de Doença , Taxa de Sobrevida
11.
Dev Dyn ; 234(1): 11-21, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16003770

RESUMO

The alpha7beta1 integrin is a laminin receptor that has been implicated in muscle disease and the development of neuromuscular and myotendinous junctions. Studies have shown the alpha7beta1 integrin is also expressed in nonskeletal muscle tissues. To identify the expression pattern of the alpha7 integrin in these tissues during embryonic development, alpha7 integrin chain knockout mice were generated by a LacZ knockin strategy. In these mice, expression from the alpha7 promoter is reported by beta-galactosidase. From embryonic day (ED) 11.5 to ED14.5, beta-galactosidase was detected in the developing central and peripheral nervous systems and vasculature. The loss of the alpha7 integrin gene resulted in partial embryonic lethality. Several alpha7 null embryos were identified with cerebrovascular hemorrhages and showed reduced vascular smooth muscle cells and cerebral vascularization. The alpha7 null mice that survived to birth exhibited vascular smooth muscle defects, including hyperplasia and hypertrophy. In addition, altered expression of alpha5 and alpha6B integrin chains was detected in the cerebral arteries of alpha7 null mice, which may contribute to the vascular phenotype. Our results demonstrate for the first time that the alpha7beta1 integrin is important for the recruitment or survival of cerebral vascular smooth muscle cells and that this integrin plays an important role in vascular development and integrity.


Assuntos
Antígenos CD/genética , Cadeias alfa de Integrinas/genética , Integrinas/fisiologia , Neovascularização Fisiológica/fisiologia , Animais , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Cadeias alfa de Integrinas/deficiência , Integrinas/deficiência , Integrinas/genética , Camundongos , Camundongos Knockout , Músculo Esquelético/metabolismo , Músculo Liso Vascular/metabolismo , Regiões Promotoras Genéticas , Telencéfalo/irrigação sanguínea , Telencéfalo/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA