Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(24)2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36556629

RESUMO

The goal of this research is the statistical optimisation of the chemical stability of hybrid microwave-sintered alumina ceramics in nitric acid. The chemical stability of ceramic materials in corrosive media depends on many parameters, such as the chemical and phase composition of the ceramics, the properties of the aggressive medium (concentration, temperature, and pressure), and the exposure time. Therefore, the chemical stability of alumina ceramics in different aqueous nitric acid solution concentrations (0.50 mol dm-3, 1.25 mol dm-3, and 2.00 mol dm-3), different exposure times (up to 10 days), as well as different temperatures (25, 40, and 55 °C), was investigated, modelled, and optimised. The chemical stability of high purity alumina ceramics (99.8345 wt.% of Al2O3) was determined by measuring the amount of eluted ions (Al3+, Ca2+, Fe3+, Mg2+, Na+, and Si4+) obtained by inductively coupled plasma atomic emission spectrometry. The changes in the density of alumina ceramics during the chemical stability monitoring were also determined. The Box-Behnken approach was employed to reach the optimum conditions for obtaining the highest possible chemical stability of alumina at a given temperature range, exposure time, and molar concentration of nitric acid. It was found that an increase in exposure time, temperature, and nitric acid concentration led to an increase in the elution of ions from hybrid microwave-sintered alumina. Higher amounts of eluted ions, Al3+ (14.805 µg cm-2), Ca2+ (7.079 µg cm-2), Fe3+ (0.361 µg cm-2), Mg2+ (3.654 µg cm-2), and Na+ ions (13.261 µg cm-2), were obtained at 55 °C in the 2 mol dm- 3 nitric acid. The amount of eluted Si4+ ions is below the detection limit of inductively coupled plasma atomic emission spectrometry. The change in the alumina ceramic density during the corrosion test was negligible.

2.
Materials (Basel) ; 15(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35407911

RESUMO

The development of ceramic materials resistance in various aggressive media combined with required mechanical properties is of considerable importance for enabling the wider application of ceramics. The corrosion resistance of ceramic materials depends on their purity and microstructure, the kind of aggressive media used and the ambient temperature. Therefore, the corrosion resistance of alumina ceramics in aqueous HNO3 solutions of concentrations of 0.50 mol dm-3, 1.25 mol dm-3 and 2.00 mol dm-3 and different exposure times-up to 10 days-have been studied. The influence of temperature (25, 40 and 55 °C) was also monitored. The evaluation of Al2O3 ceramics corrosion resistance was based on the concentration measurements of eluted Al3+, Ca2+, Fe3+, Mg2+, Na+ and Si4+ ions obtained by inductively coupled plasma atomic emission spectrometry (ICP-AES), as well as density measurements of the investigated alumina ceramics. The response surface methodology (RSM) was used for the optimization of parameters within the experimental "sample-corrosive media" area. The exposure of alumina ceramics to aqueous HNO3 solutions was conducted according to the Box-Behnken design. After the regression functions were defined, conditions to achieve the maximum corrosion resistance of the sintered ceramics were determined by optimization within the experimental area.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA