Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38646666

RESUMO

Asparagopsis taxiformis (Asparagopsis) has been shown to be highly efficacious at inhibiting the production of methane (CH4) in ruminants. To date, Asparagopsis has been primarily produced as a dietary supplement by freeze-drying to retain the volatile bioactive compound bromoform (CHBr3) in the product. Steeping of Asparagopsis bioactive compounds into a vegetable oil carrier (Asp-Oil) is an alternative method of stabilizing Asparagopsis as a ruminant feed additive. A dose-response experimental design used 3 Asp-Oil-canola oil blends, low, medium, and high Asp-Oil which provided 17, 34, and 51 mg Asparagopsis derived CHBr3/kg dry matter intake (DMI), respectively (in addition to a zero CHBr3 canola oil control), in a tempered-barley based feedlot finisher diet, fed for 59 d to 20 Angus heifers (five replicates per treatment). On four occasions, live weight was measured and CH4 emissions were quantified in respiration chambers, and blood, rumen fluid, and fecal samples were collected. At the end of the experiment, all animals were slaughtered, with carcasses graded, and samples of meat and edible offal collected for testing of consumer sensory qualities and residues of CHBr3, bromide, and iodide. All Asp-Oil treatments reduced CH4 yield (g CH4/kg DMI, P = 0.008) from control levels, with the low, medium, and high Asp-Oil achieving 64%, 98%, and 99% reduction, respectively. Dissolved hydrogen increased linearly with increasing Asp-Oil inclusion, by more than 17-fold in the high Asp-Oil group (P = 0.017). There was no effect of Asp-Oil treatment on rumen temperature, pH, reduction potential, volatile fatty acid and ammonia production, rumen pathology, and histopathology (P > 0.10). There were no differences in animal production and carcass parameters (P > 0.10). There was no detectable CHBr3 in feces or any carcass samples (P > 0.10), and iodide and bromide residues in kidneys were at levels unlikely to lead to consumers exceeding recommended maximum intakes. Overall, Asp-Oil was found to be safe for animals and consumers of meat, and effective at reducing CH4 emissions and yield by up to 99% within the range of inclusion levels tested.


Red seaweed, Asparagopsis taxiformis (Asparagopsis), has been shown to be highly effective at inhibiting the production of methane (CH4) in ruminants. An alternative to feeding whole, freeze-dried Asparagopsis is steeping the biomass in vegetable oil to stabilize the bioactive compounds (Asp-Oil) and feeding Asp-Oil to ruminants as a component of their dietary intake. This experiment measured the CH4 reduction potential and safety of Asp-Oil in a trial with 20 Angus heifers, fed iso-fat feedlot diets containing one of the three levels of Asp-Oil, or a control oil. Compared to the control, bromoform inclusion levels of 17, 34, and 51 mg/kg of dry matter (DM; low, medium, high) reduced CH4 yield (g CH4/kg DM intake) by 64%, 98%, and 99%, respectively. There were no effects on animal production or carcass characteristics. There were no impacts on animal health, welfare, or rumen function. Carcasses were safe for human consumption, and there was no bromoform detected in any carcass samples. Overall, Asp-Oil was found to effectively reduce CH4 emissions and is safe for animals and consumers of meat and edible offal.


Assuntos
Ração Animal , Dieta , Metano , Óleo de Brassica napus , Animais , Bovinos , Ração Animal/análise , Metano/metabolismo , Dieta/veterinária , Óleo de Brassica napus/química , Óleo de Brassica napus/farmacologia , Feminino , Suplementos Nutricionais/análise , Rúmen/metabolismo , Rúmen/efeitos dos fármacos , Óleos de Plantas/farmacologia , Óleos de Plantas/química
2.
Transl Anim Sci ; 6(2): txac041, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35529040

RESUMO

Mitigation of enteric methane (CH4) presents a feasible approach to curbing agriculture's contribution to climate change. One intervention for reduction is dietary reformulation, which manipulates the composition of feedstuffs in ruminant diets to redirect fermentation processes toward low CH4 emissions. Examples include reducing the relative proportion of forages to concentrates, determining the rate of digestibility and passage rate from the rumen, and dietary lipid inclusion. Feed additives present another intervention for CH4 abatement and are classified based on their mode of action. Through inhibition of key enzymes, 3-nitrooxypropanol (3-NOP) and halogenated compounds directly target the methanogenesis pathway. Rumen environment modifiers, including nitrates, essential oils, and tannins, act on the conditions that affect methanogens and remove the accessibility of fermentation products needed for CH4 formation. Low CH4-emitting animals can also be directly or indirectly selected through breeding interventions, and genome-wide association studies are expected to provide efficient selection decisions. Overall, dietary reformulation and feed additive inclusion provide immediate and reversible effects, while selective breeding produces lasting, cumulative CH4 emission reductions.

3.
PLoS One ; 16(3): e0247820, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33730064

RESUMO

The red macroalgae (seaweed) Asparagopsis spp. has shown to reduce ruminant enteric methane (CH4) production up to 99% in vitro. The objective of this study was to determine the effect of Asparagopsis taxiformis on CH4 production (g/day per animal), yield (g CH4/kg dry matter intake (DMI)), and intensity (g CH4/kg ADG); average daily gain (ADG; kg gain/day), feed conversion efficiency (FCE; kg ADG/kg DMI), and carcass and meat quality in growing beef steers. Twenty-one Angus-Hereford beef steers were randomly allocated to one of three treatment groups: 0% (Control), 0.25% (Low), and 0.5% (High) A. taxiformis inclusion based on organic matter intake. Steers were fed 3 diets: high, medium, and low forage total mixed ration (TMR) representing life-stage diets of growing beef steers. The Low and High treatments over 147 days reduced enteric CH4 yield 45 and 68%, respectively. However, there was an interaction between TMR type and the magnitude of CH4 yield reduction. Supplementing low forage TMR reduced CH4 yield 69.8% (P <0.01) for Low and 80% (P <0.01) for High treatments. Hydrogen (H2) yield (g H2/DMI) increased (P <0.01) 336 and 590% compared to Control for the Low and High treatments, respectively. Carbon dioxide (CO2) yield (g CO2/DMI) increased 13.7% between Control and High treatments (P = 0.03). No differences were found in ADG, carcass quality, strip loin proximate analysis and shear force, or consumer taste preferences. DMI tended to decrease 8% (P = 0.08) in the Low treatment and DMI decreased 14% (P <0.01) in the High treatment. Conversely, FCE tended to increase 7% in Low (P = 0.06) and increased 14% in High (P <0.01) treatment compared to Control. The persistent reduction of CH4 by A. taxiformis supplementation suggests that this is a viable feed additive to significantly decrease the carbon footprint of ruminant livestock and potentially increase production efficiency.


Assuntos
Ração Animal , Dieta/veterinária , Suplementos Nutricionais , Carne , Metano/metabolismo , Rodófitas/metabolismo , Animais , Bovinos , Masculino , Alga Marinha/metabolismo , Estômago de Ruminante/metabolismo
4.
Transl Anim Sci ; 3(4): 1383-1388, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32704901

RESUMO

Enteric methane (CH4) production is the main source of greenhouse gas emissions from livestock globally with beef cattle contributing 5.95% of total global greenhouse gas emissions. Various mitigation strategies have been developed to reduce enteric emissions with limited success. In vitro studies have shown a reduction in CH4 emissions when using garlic and citrus extracts. However, there is paucity of data regarding in vivo studies investigating the effect of garlic and citrus extracts in cattle. The objective of this study was to quantitatively evaluate the response of Angus × Hereford cross steers consuming the feed additive Mootral, which contains extracts of both garlic and citrus, on CH4 yield (g/kg dry matter intake [DMI]). Twenty steers were randomly assigned to two treatments: control (no additive) and Mootral supplied at 15 g/d in a completely randomized design with a 2-wk covariate and a 12-wk data collection periods. Enteric CH4 emissions were measured using the GreenFeed system during the covariate period and experimental weeks 2, 6, 9, and 12. CH4 yield (g/kg DMI) by steers remained similar in both treatments for weeks 2 to 9. In week 12, there was a significant decrease in CH4 yield (23.2%) in treatment compared to control steers mainly because the steers were consuming all the pellets containing the additive. However, overall CH4 yield (g/kg DMI) during the entire experimental period was not significantly different. Carbon dioxide yield (g/kg DMI) and oxygen consumption (g/kg DMI) did not differ between treatments during the entire experimental period. DMI, average daily gain, and feed efficiency also remained similar in control and supplemented steers. The in vivo results showed that Mootral may have a potential to be used as a feed additive to reduce enteric CH4 production and yield in beef cattle but needs further investigation under various dietary regimen.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA