Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
Molecules ; 29(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38731622

RESUMO

This work is focused on performing a quantitative assessment of the environmental impacts associated with an organic synthesis reaction, optimized using an experimental design approach. A nucleophilic substitution reaction was selected, employing vanillin as the substrate, a phenolic compound widely used in the food industry and of pharmaceutical interest, considering its antioxidant and antitumoral potential. To carry out the reaction, three different solvents have been chosen, namely acetonitrile (ACN), acetone (Ace), and dimethylformamide (DMF). The syntheses were planned with the aid of a multivariate experimental design to estimate the best reaction conditions, which simultaneously allow a high product yield and a reduced environmental impact as computed by Life Cycle Assessment (LCA) methodology. The experimental results highlighted that the reactions carried out in DMF resulted in higher yields with respect to ACN and Ace; these reactions were also the ones with lower environmental impacts. The multilinear regression models allowed us to identify the optimal experimental conditions able to guarantee the highest reaction yields and lowest environmental impacts for the studied reaction. The identified optimal experimental conditions were also validated by experimentally conducting the reaction in those conditions, which indeed led to the highest yield (i.e., 93%) and the lowest environmental impacts among the performed experiments. This work proposes, for the first time, an integrated approach of DoE and LCA applied to an organic reaction with the aim of considering both conventional metrics, such as reaction yield, and unconventional ones, such as environmental impacts, during its lab-scale optimization.

2.
Sensors (Basel) ; 24(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38732922

RESUMO

Vibration energy harvesting based on piezoelectric transducers is an attractive choice to replace single-use batteries in powering Wireless Sensor Nodes (WSNs). As of today, their widespread application is hindered due to low operational bandwidth and the conventional use of lead-based materials. The Restriction of Hazardous Substances legislation (RoHS) implemented in the European Union restricts the use of lead-based piezoelectric materials in future electronic devices. This paper investigates lithium niobate (LiNbO3) as a lead-free material for a high-performance broadband Piezoelectric Energy Harvester (PEH). A single-clamped, cantilever beam-based piezoelectric microgenerator with a mechanical footprint of 1 cm2, working at a low resonant frequency of 200 Hz, with a high piezoelectric coupling coefficient and broad bandwidth, was designed and microfabricated, and its performance was evaluated. The PEH device, with an acceleration of 1 g delivers a maximum output RMS power of nearly 35 µW/cm2 and a peak voltage of 6 V for an optimal load resistance at resonance. Thanks to a high squared piezoelectric electro-mechanical coupling coefficient (k2), the device offers a broadband operating frequency range above 10% of the central frequency. The Mason electro-mechanical equivalent circuit was derived, and a SPICE model of the device was compared with experimental results. Finally, the output voltage of the harvester was rectified to provide a DC output stored on a capacitor, and it was regulated and used to power an IoT node at an acceleration of as low as 0.5 g.

3.
Microbiol Spectr ; : e0005724, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38682931

RESUMO

Streptococcus agalactiae [group B Streptococcus (GBS)] poses a major threat as the primary cause of early-onset neonatal invasive disease, particularly when mothers are colonized rectovaginally. Although culture remains the gold standard for antepartum GBS screening, quantitative polymerase chain reaction (qPCR) offers advantages in terms of sensitivity and turnaround time. The aim of this study was to validate the clinical utility of an automated qPCR laboratory-developed test (LDT) for antepartum GBS screening using the Panther Fusion Open Access system (Hologic, California, USA). The LDT targeted a conserved region of the GBS surface immunogenic protein gene, demonstrating no cross-reactivity and high coverage (99.82%-99.99%). The limit of detection (LoD) was 118 CFU/mL. Comparison with commercial qPCR assays (Panther Fusion GBS and VIASURE Streptococcus B Real-Time) revealed an overall agreement of 99.7%, with a robust Cohen's kappa coefficient of 0.992. Testing of 285 rectovaginal swabs from pregnant women and 15 external quality assessment samples demonstrated exceptional diagnostic performance of the LDT, achieving a diagnostic sensitivity and specificity of 100%, underscoring its accuracy. Prevalence and predictive values were also determined to reinforce test reliability. Our research highlights the limitations of culture-based screening and supports the suitability of our qPCR-based LDT for GBS detection in a clinical setting.IMPORTANCERectovaginal colonization by GBS is a major risk factor for early-onset invasive neonatal disease. The most effective approach to reducing the incidence of early-onset disease (EOD) has been described as universal screening, involving assessment of GBS colonization status in late pregnancy and intrapartum antibiotic prophylaxis. Despite its turnaround time and sensitivity limitations, culture remains the gold standard method for GBS screening. However, nucleic acid amplification-based tests, such as qPCR, have been utilized due to their speed and high sensitivity and specificity. This study validated the clinical usefulness of an automated qPCR-LDT for antepartum GBS screening through the Panther Fusion Open Access system (Hologic). Our study addresses the critical need for more robust, sensitive, and rapid strategies for GBS screening in pregnant women that could favorably impact the incidence of EOD.

4.
Lancet Planet Health ; 8(1): e30-e40, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38199719

RESUMO

BACKGROUND: Estimates of the spatiotemporal distribution of different mosquito vector species and the associated risk of transmission of arboviruses are key to design adequate policies for preventing local outbreaks and reducing the number of human infections in endemic areas. In this study, we quantified the abundance of Aedes albopictus and Aedes aegypti and the local transmission potential for three arboviral infections at an unprecedented spatiotemporal resolution in areas where no entomological surveillance is available. METHODS: We developed a computational model to quantify the daily abundance of Aedes mosquitoes, leveraging temperature and precipitation records. The model was calibrated on mosquito surveillance data collected in 115 locations in Europe and the Americas between 2007 and 2018. Model estimates were used to quantify the reproduction number of dengue virus, Zika virus, and chikungunya in Europe and the Americas, at a high spatial resolution. FINDINGS: In areas colonised by both Aedes species, A aegypti was estimated to be the main vector for the transmission of dengue virus, Zika virus, and chikungunya, being associated with a higher estimate of R0 when compared with A albopictus. Our estimates highlighted that these arboviruses were endemic in tropical and subtropical countries, with the highest risks of transmission found in central America, Venezuela, Colombia, and central-east Brazil. A non-negligible potential risk of transmission was also estimated for Florida, Texas, and Arizona (USA). The broader ecological niche of A albopictus could contribute to the emergence of chikungunya outbreaks and clusters of dengue autochthonous cases in temperate areas of the Americas, as well as in mediterranean Europe (in particular, in Italy, southern France, and Spain). INTERPRETATION: Our results provide a comprehensive overview of the transmission potential of arboviral diseases in Europe and the Americas, highlighting areas where surveillance and mosquito control capacities should be prioritised. FUNDING: EU and Ministero dell'Università e della Ricerca, Italy (Piano Nazionale di Ripresa e Resilienza Extended Partnership initiative on Emerging Infectious Diseases); EU (Horizon 2020); Ministero dell'Università e della Ricerca, Italy (Progetti di ricerca di Rilevante Interesse Nazionale programme); Brazilian National Council of Science, Technology and Innovation; Ministry of Health, Brazil; and Foundation of Research for Minas Gerais, Brazil.


Assuntos
Aedes , Arbovírus , Febre de Chikungunya , Infecção por Zika virus , Zika virus , Humanos , Animais , Febre de Chikungunya/epidemiologia , Europa (Continente)/epidemiologia , Infecção por Zika virus/epidemiologia
5.
Nat Commun ; 14(1): 6440, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833275

RESUMO

It is unclear whether West Nile virus (WNV) circulates between Africa and Europe, despite numerous studies supporting an African origin and high transmission in Europe. We integrated genomic data with geographic observations and phylogenetic and phylogeographic inferences to uncover the spatial and temporal viral dynamics of WNV between these two continents. We focused our analysis towards WNV lineages 1 (L1) and 2 (L2), the most spatially widespread and pathogenic WNV lineages. Our study shows a Northern-Western African origin of L1, with back-and-forth exchanges between West Africa and Southern-Western Europe; and a Southern African origin of L2, with one main introduction from South Africa to Europe, and no back introductions observed. We also noticed a potential overlap between L1 and L2 Eastern and Western phylogeography and two Afro-Palearctic bird migratory flyways. Future studies linking avian and mosquito species susceptibility, migratory connectivity patterns, and phylogeographic inference are suggested to elucidate the dynamics of emerging viruses.


Assuntos
Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Vírus do Nilo Ocidental/genética , Filogenia , Europa (Continente)/epidemiologia , África do Sul , Aves
6.
PLoS Negl Trop Dis ; 17(9): e0011610, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37708121

RESUMO

BACKGROUND: Emerging arboviral diseases in Europe pose a challenge due to difficulties in detecting and diagnosing cases during the initial circulation of the pathogen. Early outbreak detection enables public health authorities to take effective actions to reduce disease transmission. Quantification of the reporting delays of cases is vital to plan and assess surveillance and control strategies. Here, we provide estimates of reporting delays during an emerging arboviral outbreak and indications on how delays may have impacted onward transmission. METHODOLOGY/PRINCIPAL FINDINGS: Using descriptive statistics and Kaplan-Meyer curves we analyzed case reporting delays (the period between the date of symptom onset and the date of notification to the public health authorities) during the 2017 Italian chikungunya outbreak. We further investigated the effect of outbreak detection on reporting delays by means of a Cox proportional hazard model. We estimated that the overall median reporting delay was 15.5 days, but this was reduced to 8 days after the notification of the first case. Cases with symptom onset after outbreak detection had about a 3.5 times higher reporting rate, however only 3.6% were notified within 24h from symptom onset. Remarkably, we found that 45.9% of identified cases developed symptoms before the detection of the outbreak. CONCLUSIONS/SIGNIFICANCE: These results suggest that efforts should be undertaken to improve the early detection and identification of arboviral cases, as well as the management of vector species to mitigate the impact of long reporting delays.


Assuntos
Febre de Chikungunya , Humanos , Febre de Chikungunya/diagnóstico , Febre de Chikungunya/epidemiologia , Surtos de Doenças , Itália/epidemiologia , Europa (Continente) , Saúde Pública
7.
ACS Sustain Chem Eng ; 11(32): 12014-12026, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37593378

RESUMO

This work is focused on the application of Life Cycle Assessment (LCA) methodology for the quantification of the potential environmental impacts associated with the obtainment of levulinic acid from residual Cynara cardunculus L. biomass and its subsequent valorization in innovative bioplasticizers for tuning the properties as well as the processability of biopolymers. This potentially allows the production of fully biobased and biodegradable bioplastic formulations, thus addressing the issues related to the fossil origin and nonbiodegradability of conventional additives, such as phthalates. Steam explosion pretreatment was applied to the epigean residue of C. cardunculus L. followed by a microwave-assisted acid-catalyzed hydrolysis. After purification, the as-obtained levulinic acid was used to synthesize different ketal-diester derivatives through a three-step selective synthesis. The levulinic acid-base additives demonstrated remarkable plasticizing efficiency when added to biobased plastics. The LCA results were used in conjunction with those from the experimental activities to find the optimal compromise between environmental impacts and mechanical and thermal properties, induced by the bioadditives in poly(3-hydroxybutyrate), PHB biopolymer.

8.
PLoS Negl Trop Dis ; 17(8): e0010655, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37590255

RESUMO

BACKGROUND: Outbreaks of Aedes-borne diseases in temperate areas are not frequent, and limited in number of cases. We investigate the associations between habitat factors and temperature on individuals' risk of chikungunya (CHIKV) in a non-endemic area by spatially analyzing the data from the 2017 Italian outbreak. METHODOLOGY/PRINCIPAL FINDINGS: We adopted a case-control study design to analyze the association between land-cover variables, temperature, and human population density with CHIKV cases. The observational unit was the area, at different scales, surrounding the residence of each CHIKV notified case. The statistical analysis was conducted considering the whole dataset and separately for the resort town of Anzio and the metropolitan city of Rome, which were the two main foci of the outbreak. In Rome, a higher probability for the occurrence of CHIKV cases is associated with lower temperature (OR = 0.72; 95% CI: 0.61-0.85) and with cells with higher vegetation coverage and human population density (OR = 1.03; 95% CI: 1.00-1.05). In Anzio, CHIKV case occurrence was positively associated with human population density (OR = 1.03; 95% CI: 1.00-1.06) but not with habitat factors or temperature. CONCLUSION/SIGNIFICANCE: Using temperature, human population density and vegetation coverage data as drives for CHIKV transmission, our estimates could be instrumental in assessing spatial heterogeneity in the risk of experiencing arboviral diseases in non-endemic temperate areas.


Assuntos
Aedes , Febre de Chikungunya , Vírus Chikungunya , Animais , Humanos , Estudos de Casos e Controles , Itália/epidemiologia , Febre de Chikungunya/epidemiologia , Surtos de Doenças
9.
Viruses ; 15(6)2023 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-37376561

RESUMO

West Nile virus is a re-emerging arbovirus whose impact on public health is increasingly important as more and more epidemics and epizootics occur, particularly in America and Europe, with evidence of active circulation in Africa. Because birds constitute the main reservoirs, migratory movements allow the diffusion of various lineages in the world. It is therefore crucial to properly control the dispersion of these lineages, especially because some have a greater health impact on public health than others. This work describes the development and validation of a novel whole-genome amplicon-based sequencing approach to West Nile virus. This study was carried out on different strains from lineage 1 and 2 from Senegal and Italy. The presented protocol/approach showed good coverage using samples derived from several vertebrate hosts and may be valuable for West Nile genomic surveillance.


Assuntos
Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Humanos , Vírus do Nilo Ocidental/genética , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/veterinária , Europa (Continente)/epidemiologia , Itália , Senegal
10.
PLoS Negl Trop Dis ; 17(5): e0010252, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37126524

RESUMO

West Nile disease is a vector-borne disease caused by West Nile virus (WNV), involving mosquitoes as vectors and birds as maintenance hosts. Humans and other mammals can be infected via mosquito bites, developing symptoms ranging from mild fever to severe neurological infection. Due to the worldwide spread of WNV, human infection risk is high in several countries. Nevertheless, there are still several knowledge gaps regarding WNV dynamics. Several aspects of transmission taking place between birds and mosquitoes, such as the length of the infectious period in birds or mosquito biting rates, are still not fully understood, and precise quantitative estimates are still lacking for the European species involved. This lack of knowledge affects the precision of parameter values when modelling the infection, consequently resulting in a potential impairment of the reliability of model simulations and predictions and in a lack of the overall understanding of WNV spread. Further investigations are thus needed to better understand these aspects, but field studies, especially those involving several wild species, such as in the case of WNV, can be challenging. Thus, it becomes crucial to identify which transmission processes most influence the dynamics of WNV. In the present work, we propose a sensitivity analysis to investigate which of the selected epidemiological parameters of WNV have the largest impact on the spread of the infection. Based on a mathematical model simulating WNV spread into the Lombardy region (northern Italy), the basic reproduction number of the infection was estimated and used to quantify infection spread into mosquitoes and birds. Then, we quantified how variations in four epidemiological parameters representing the duration of the infectious period in birds, the mosquito biting rate on birds, and the competence and susceptibility to infection of different bird species might affect WNV transmission. Our study highlights that knowledge gaps in WNV epidemiology affect the precision in several parameters. Although all investigated parameters affected the spread of WNV and the modelling precision, the duration of the infectious period in birds and mosquito biting rate are the most impactful, pointing out the need of focusing future studies on a better estimate of these parameters at first. In addition, our study suggests that a WNV outbreak is very likely to occur in all areas with suitable temperatures, highlighting the wide area where WNV represents a serious risk for public health.


Assuntos
Culex , Mordeduras e Picadas de Insetos , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Humanos , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/veterinária , Reprodutibilidade dos Testes , Mamíferos , Modelos Teóricos , Aves
11.
J Thorac Imaging ; 38(2): 128-135, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36821381

RESUMO

PURPOSE: The Italian Registry of Contrast Material use in Cardiac Computed Tomography (iRCM-CCT) is a multicenter, multivendor, observational study on the use of contrast media (CM) in patients undergoing cardiac computed tomography (CCT). The aim of iRCM-CCT is to assess image quality and safety profile of intravenous CM compounds. MATERIALS AND METHODS: iRCM-CCT enrolled 1842 consecutive patients undergoing CCT (≥50 per site) at 20 cluster sites with the indication of suspected coronary artery disease. Demographic characteristics, CCT, and CM protocols, clinical indications, safety markers, radiation dose reports, qualitative (ie, poor vascular enhancement) and quantitative (ie, HU attenuation values) image parameters were recorded. A centralized coordinating center collected and assessed all image parameters. RESULTS: The cohort included 891 men and 951 women (age: 63±14 y, body mass index: 26±4 kg/m2) studied with ≥64 detector rows computed tomography scanners and different iodinated intravenous CM protocols and compounds (iodixanol, iopamidol, iohexol, iobitridol, iopromide, and iomeprol). The following vascular attenuation was reported: 504±147 HU in the aorta, 451±146 HU in the right coronary artery, 474±146 HU in the left main, 451±146 HU in the left anterior descending artery, and 441±149 HU in the circumflex artery. In 4% of cases the image quality was not satisfactory due to poor enhancement. The following adverse reactions to CM were recorded: 6 (0.3%) extravasations and 17 (0.9%) reactions (11 mild, 4 moderate, 2 severe). CONCLUSIONS: In a multicenter registry on CM use during CCT the prevalence of CM-related adverse reactions was very low. The appropriate use of CM is a major determinant of image quality.


Assuntos
Meios de Contraste , Doença da Artéria Coronariana , Masculino , Humanos , Feminino , Pessoa de Meia-Idade , Idoso , Tomografia Computadorizada por Raios X/métodos , Angiografia Coronária/métodos , Sistema de Registros
12.
Stem Cell Res Ther ; 14(1): 31, 2023 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-36805780

RESUMO

BACKGROUND: Human dental pulp stem cells represent a mesenchymal stem cell niche localized in the perivascular area of dental pulp and are characterized by low immunogenicity and immunomodulatory/anti-inflammatory properties. Pericytes, mural cells surrounding the endothelium of small vessels, regulate numerous functions including vessel growth, stabilization and permeability. It is well established that pericytes have a tight cross talk with endothelial cells in neoangiogenesis and vessel stabilization, which are regulated by different factors, i.e., microenvironment and flow-dependent shear stress. The aim of this study was to evaluate the effects of a pulsatile unidirectional flow in the presence or not of an inflammatory microenvironment on the biological properties of pericyte-like cells isolated from human dental pulp (hDPSCs). METHODS: Human DPSCs were cultured under both static and dynamic conditions with or without pre-activated peripheral blood mononuclear cells (PBMCs). Pulsatile unidirectional flow shear stress was generated by using a specific peristaltic pump. The angiogenic potential and inflammatory properties of hDPSCs were evaluated through reverse phase protein microarrays (RPPA), confocal immunofluorescence and western blot analyses. RESULTS: Our data showed that hDPSCs expressed the typical endothelial markers, which were up-regulated after endothelial induction, and were able to form tube-like structures. RPPA analyses revealed that these properties were modulated when a pulsatile unidirectional flow shear stress was applied to hDPSCs. Stem cells also revealed a downregulation of the immune-modulatory molecule PD-L1, in parallel with an up-regulation of the pro-inflammatory molecule NF-kB. Immune-modulatory properties of hDPSCs were also reduced after culture under flow-dependent shear stress and exposure to an inflammatory microenvironment. This evidence was strengthened by the detection of up-regulated levels of expression of pro-inflammatory cytokines in PBMCs. CONCLUSIONS: In conclusion, the application of a pulsatile unidirectional flow shear stress induced a modulation of immunomodulatory/inflammatory properties of dental pulp pericyte-like cells.


Assuntos
Células Endoteliais , Pericitos , Humanos , Polpa Dentária , Leucócitos Mononucleares , Células-Tronco
13.
ChemSusChem ; 16(8): e202202196, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-36601970

RESUMO

This paper represents the first attempt to quantitatively and reliably assess the environmental sustainability of solution combustion synthesis (SCS) with respect to other soft chemistry strategies, which are more conventionally employed in the preparation of engineered oxide nanomaterials, namely hydrolytic and non-hydrolytic sol-gel syntheses (i. e., HSGS and NHSGS). Indeed, although SCS is well known to rely on significant reduction in the energy as well as time required for the obtainment of the desired nanocrystals, its quantitative environmental assessment and a detailed comparison with other existing synthetic pathways represents an absolute novelty of high scientific desirability in order to pursue a more sustainable development in the inorganic chemistry as well as materials science research fields. TiO2 nanoparticles were selected as the material of choice, for the production of which three slightly modified literature procedures were experimentally reproduced and environmentally evaluated by the application of the comprehensive life cycle assessment (LCA) methodology. Particularly, SCS was compared from an environmental perspective with sol-gel approaches performed both in water and in benzyl alcohol. The results of the present study were also framed among those recently obtained in a systematic study assessing seven further chemical, physical, and biological routes for the synthesis of TiO2 nanoparticles, comprising also flame spray pyrolysis (typically used in industrial productions), highlighting and quantifying the excellent environmental performances of SCS.

14.
One Health ; 15: 100462, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36532665

RESUMO

West Nile virus (WNV) is among the most recent emerging mosquito-borne pathogens in Europe where each year hundreds of human cases are recorded. We developed a relatively simple technique to model the WNV force of infection (FOI) in the human population to assess its dependence on environmental and human demographic factors. To this aim, we collated WNV human case-based data reported to the European Surveillance System from 15 European Countries during the period 2010-2021. We modelled the regional WNV FOI for each year through normal distributions and calibrated the constituent parameters, namely average (peak timing), variance and overall intensity, to observed cases. Finally, we investigated through regression models how these parameters are associated to a set of climatic, environmental and human demographic covariates. Our modelling approach shows good agreement between expected and observed epidemiological curves. We found that FOI magnitude is positively associated with spring temperature and larger in more anthropogenic semi-natural areas, while FOI peak timing is negatively related to summer temperature. Unsurprisingly, FOI is estimated to be greater in regions with a larger fraction of elderly people, who are more likely to contract severe infections. Our results confirm that temperature plays a key role in shaping WNV transmission in Europe and provide some interesting hints on how human presence and demography might affect WNV burden. This simple yet reliable approach could be easily adopted for early warning and to address epidemiological investigations of other vector-borne diseases, especially where eco-epidemiological data are scarce.

15.
Sci Rep ; 12(1): 15751, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36130985

RESUMO

Aedes koreicus is an invasive mosquito species which has been introduced into several European countries. Compared to other invasive Aedes mosquitoes, little is known of its biology and ecology. To determine Ae. koreicus' vectorial capacity, it is essential to establish its feeding patterns and level of anthropophagy. We report on the blood-feeding patterns of Ae. koreicus, examining the blood meal origin of engorged females and evaluating the influence of different biotic and abiotic factors on feeding behavior. Mosquitoes were collected in 23 sites in northern Italy by manual aspiration and BG-sentinel traps; host availability was estimated by survey. The source of blood meals was identified using a nested PCR and by targeting and sequencing the cytochrome c oxidase subunit I gene. In total, 352 Ae. koreicus engorged females were collected between 2013 and 2020 and host blood meals were determined from 299 blood-fed mosquitoes (84.9%). Eleven host species were identified, with the highest prevalences being observed among roe deer (Capreolus capreolus) (N = 189, 63.2%) and humans (N = 46, 15.4%). Blood meals were mostly taken from roe deer in forested sites and from humans in urban areas, suggesting that this species can feed on different hosts according to local abundance. Two blood meals were identified from avian hosts and one from lizard. Ae. koreicus' mammalophilic feeding pattern suggests that it may be a potential vector of pathogens establishing transmission cycles among mammals, whereas its role as a bridge vector between mammals and birds could be negligible.


Assuntos
Aedes , Cervos , Aedes/genética , Animais , Aves , Complexo IV da Cadeia de Transporte de Elétrons , Europa (Continente) , Comportamento Alimentar , Feminino , Humanos , Espécies Introduzidas , Mosquitos Vetores/genética
16.
Trop Med Infect Dis ; 7(8)2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-36006252

RESUMO

In January 2022, West Nile virus (WNV) lineage 2 (L2) was detected in an adult female goshawk rescued near Perugia in the region of Umbria (Italy). The animal showed neurological symptoms and died 15 days after its recovery in a wildlife rescue center. This was the second case of WNV infection recorded in birds in the Umbria region during the cold season, when mosquitoes, the main WNV vectors, are usually not active. According to the National Surveillance Plan, the Umbria region is included amongst the WNV low-risk areas. The necropsy evidenced generalized pallor of the mucous membranes, mild splenomegaly, and cerebral edema. WNV L2 was detected in the brain, heart, kidney, and spleen homogenate using specific RT-PCR. Subsequently, the extracted viral RNA was sequenced. A Bayesian phylogenetic analysis performed through a maximum-likelihood tree showed that the genome sequence clustered with the Italian strains within the European WNV strains among the central-southern European WNV L2 clade. These results, on the one hand, confirmed that the WNV L2 strains circulating in Italy are genetically stable and, on the other hand, evidenced a continuous WNV circulation in Italy throughout the year. In this report case, a bird-to-bird WNV transmission was suggested to support the virus overwintering. The potential transmission through the oral route in a predatory bird may explain the relatively rapid spread of WNV, as well as other flaviviruses characterized by similar transmission patterns. However, rodent-to-bird transmission or mosquito-to-bird transmission cannot be excluded, and further research is needed to better understand WNV transmission routes during the winter season in Italy.

18.
J Am Mosq Control Assoc ; 38(1): 40-45, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35276728

RESUMO

Among the few mosquito larvicides available in the market, Bacillus thuringiensis subsp. israelensis (Bti) and B. sphaericus (Bs) represent the most environmentally safe alternatives. The combination of the 2 products is known to overcome their specific limitations by producing a synergistic effect. The aim of the study was to assess the effect and persistence of a single treatment with a granular Bti + Bs formulation on highly vegetated ditches in northeastern Italy that represents the primary rural larval sites for Culex pipiens, the primary vector of the West Nile virus in Europe. The analysis takes into account the nonlinear temporal effects on the population dynamics of larvae and pupae. The results showed a dramatic reduction in mosquito larval abundance 24 h posttreatment (93%) and was effective against larvae up to 22 days (100%). The residual effect after 28 days was 99.5%, and a limited residual effect was observed after 39 days (31.2%). A reduction in pupal density was observed after 4 days (70%) and was >98% from days 14 to 28 posttreatment, persisting for up to 39 days (84% after 39 days). The results demonstrate the effective use of the Bti + Bs formulation against Cx. pipiens in vegetated ditches in rural areas. Our modeling framework provides a flexible statistical approach to predict the residual effect of the product over time, in order to plan a seasonal intervention scheme.


Assuntos
Bacillus thuringiensis , Bacillus , Culex , Culicidae , Animais , Bacillaceae , Larva , Controle de Mosquitos/métodos , Mosquitos Vetores , Controle Biológico de Vetores/métodos , Pupa
19.
PLoS Negl Trop Dis ; 16(1): e0010075, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35007285

RESUMO

BACKGROUND: West Nile virus is a mosquito-borne flavivirus which has been posing continuous challenges to public health worldwide due to the identification of new lineages and clades and its ability to invade and establish in an increasing number of countries. Its current distribution, genetic variability, ecology, and epidemiological pattern in the African continent are only partially known despite the general consensus on the urgency to obtain such information for quantifying the actual disease burden in Africa other than to predict future threats at global scale. METHODOLOGY AND PRINCIPAL FINDINGS: References were searched in PubMed and Google Scholar electronic databases on January 21, 2020, using selected keywords, without language and date restriction. Additional manual searches of reference list were carried out. Further references have been later added accordingly to experts' opinion. We included 153 scientific papers published between 1940 and 2021. This review highlights: (i) the co-circulation of WNV-lineages 1, 2, and 8 in the African continent; (ii) the presence of diverse WNV competent vectors in Africa, mainly belonging to the Culex genus; (iii) the lack of vector competence studies for several other mosquito species found naturally infected with WNV in Africa; (iv) the need of more competence studies to be addressed on ticks; (iv) evidence of circulation of WNV among humans, animals and vectors in at least 28 Countries; (v) the lack of knowledge on the epidemiological situation of WNV for 19 Countries and (vii) the importance of carrying out specific serological surveys in order to avoid possible bias on WNV circulation in Africa. CONCLUSIONS: This study provides the state of art on WNV investigation carried out in Africa, highlighting several knowledge gaps regarding i) the current WNV distribution and genetic diversity, ii) its ecology and transmission chains including the role of different arthropods and vertebrate species as competent reservoirs, and iii) the real disease burden for humans and animals. This review highlights the needs for further research and coordinated surveillance efforts on WNV in Africa.


Assuntos
Aedes/virologia , Culex/virologia , Carrapatos/virologia , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/transmissão , África/epidemiologia , Animais , Humanos , Controle de Insetos/métodos , Mosquitos Vetores/virologia , Febre do Nilo Ocidental/patologia , Vírus do Nilo Ocidental/genética , Vírus do Nilo Ocidental/isolamento & purificação
20.
Viruses ; 15(1)2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36680076

RESUMO

West Nile virus (WNV) is a mosquito-borne virus potentially causing serious illness in humans and other animals. Since 2004, several studies have highlighted the progressive spread of WNV Lineage 2 (L2) in Europe, with Italy being one of the countries with the highest number of cases of West Nile disease reported. In this paper, we give an overview of the epidemiological and genetic features characterising the spread and evolution of WNV L2 in Italy, leveraging data obtained from national surveillance activities between 2011 and 2021, including 46 newly assembled genomes that were analysed under both phylogeographic and phylodynamic frameworks. In addition, to better understand the seasonal patterns of the virus, we used a machine learning model predicting areas at high-risk of WNV spread. Our results show a progressive increase in WNV L2 in Italy, clarifying the dynamics of interregional circulation, with no significant introductions from other countries in recent years. Moreover, the predicting model identified the presence of suitable conditions for the 2022 earlier and wider spread of WNV in Italy, underlining the importance of using quantitative models for early warning detection of WNV outbreaks. Taken together, these findings can be used as a reference to develop new strategies to mitigate the impact of the pathogen on human and other animal health in endemic areas and new regions.


Assuntos
Culicidae , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Humanos , Vírus do Nilo Ocidental/genética , Febre do Nilo Ocidental/epidemiologia , Itália/epidemiologia , Europa (Continente)/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA