Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
1.
J Dairy Sci ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38908714

RESUMO

The rumen microbiome is crucial for converting feed into absorbable nutrients used for milk synthesis, and the efficiency of this process directly impacts the profitability and sustainability of the dairy industry. Recent studies have found that the rumen microbial composition explains part of the variation in feed efficiency traits, including dry matter intake, milk energy, and residual feed intake. The main goal of this study was to reveal relationships between the host genome, rumen microbiome, and dairy cow feed efficiency using structural equation models. Our specific objectives were to (i) infer the mediation effects of the rumen microbiome on feed efficiency traits, (ii) estimate the direct and total heritability of feed efficiency traits, and (iii) calculate the direct and total breeding values of feed efficiency traits. Data consisted of dry matter intake, milk energy, and residual feed intake records, SNP genotype data, and 16S rRNA rumen microbial abundances from 448 mid-lactation Holstein cows from 2 research farms. We implemented structural equation models such that the host genome directly affects the phenotype (GP → P) and the rumen microbiome (GM → P), while the microbiome affects the phenotype (M → P), partially mediating the effect of the host genome on the phenotype (G → M → P). We found that 7 to 30% of microbes within the rumen microbial community had structural coefficients different from zero. We classified these microbes into 3 groups that could have different uses in dairy farming. Microbes with heritability <0.10 but significant causal effects on feed efficiency are attractive for external interventions. On the other hand, 2 groups of microbes with heritability ≥0.10, significant causal effects, and genetic covariances and causal effects with the same or opposite sign to feed efficiency are attractive for selective breeding, improving or decreasing the trait heritability and response to selection, respectively. In general, the inclusion of the different microbes in genomic models tends to decrease the trait heritability rather than increase it, ranging from -15% to +5%, depending on the microbial group and phenotypic trait. Our findings provide more understanding to target rumen microbes that can be manipulated, either through selection or management interventions, to improve feed efficiency traits.

2.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38908015

RESUMO

Precision livestock farming aims to individually and automatically monitor animal activity to ensure their health, well-being, and productivity. Computer vision has emerged as a promising tool for this purpose. However, accurately tracking individuals using imaging remains challenging, especially in group housing where animals may have similar appearances. Close interaction or crowding among animals can lead to the loss or swapping of animal IDs, compromising tracking accuracy. To address this challenge, we implemented a framework combining a tracking-by-detection method with a radio frequency identification (RFID) system. We tested this approach using twelve pigs in a single pen as an illustrative example. Three of the pigs had distinctive natural coat markings, enabling their visual identification within the group. The remaining pigs either shared similar coat color patterns or were entirely white, making them visually indistinguishable from each other. We employed the latest version of the You Only Look Once (YOLOv8) and BoT-SORT algorithms for detection and tracking, respectively. YOLOv8 was fine-tuned with a dataset of 3,600 images to detect and classify different pig classes, achieving a mean average precision of all the classes of 99%. The fine-tuned YOLOv8 model and the tracker BoT-SORT were then applied to a 166.7-min video comprising 100,018 frames. Results showed that pigs with distinguishable coat color markings could be tracked 91% of the time on average. For pigs with similar coat color, the RFID system was used to identify individual animals when they entered the feeding station, and this RFID identification was linked to the image trajectory of each pig, both backward and forward. The two pigs with similar markings could be tracked for an average of 48.6 min, while the seven white pigs could be tracked for an average of 59.1 min. In all cases, the tracking time assigned to each pig matched the ground truth 90% of the time or more. Thus, our proposed framework enabled reliable tracking of group-housed pigs for extended periods, offering a promising alternative to the independent use of image or RFID approaches alone. This approach represents a significant step forward in combining multiple devices for animal identification, tracking, and traceability, particularly when homogeneous animals are kept in groups.


In precision livestock farming, monitoring animal activity is crucial to ensure their health, well-being, and productivity. While digital cameras and computer vision algorithms offer a promising solution for this task, tracking individual animals of similar appearance when housed in groups can be challenging. Close interaction among animals can lead to a loss of individual identity, which affects tracking accuracy. To overcome this problem, we developed a framework that combines camera images with radio frequency identification (RFID) ear tags. This methodology was applied to a pen housing 12 pigs, with an RFID reader located inside the feeder. Among the pigs, three had unique coat markings, enabling them to be tracked most of the time without losing their identity (87% of the time). The remaining pigs could not be visually distinguished from each other, so information from the RFID system was used to recover lost IDs every time pigs entered the feeder. The framework achieves 97% accuracy in tracking, offering a reliable solution for monitoring group-housed pigs.


Assuntos
Algoritmos , Sistemas de Identificação Animal , Abrigo para Animais , Dispositivo de Identificação por Radiofrequência , Animais , Suínos , Sistemas de Identificação Animal/veterinária , Sistemas de Identificação Animal/métodos , Sistemas de Identificação Animal/instrumentação , Criação de Animais Domésticos/métodos
3.
J Anim Sci Biotechnol ; 15(1): 83, 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38851729

RESUMO

BACKGROUND: Various blood metabolites are known to be useful indicators of health status in dairy cattle, but their routine assessment is time-consuming, expensive, and stressful for the cows at the herd level. Thus, we evaluated the effectiveness of combining in-line near infrared (NIR) milk spectra with on-farm (days in milk [DIM] and parity) and genetic markers for predicting blood metabolites in Holstein cattle. Data were obtained from 388 Holstein cows from a farm with an AfiLab system. NIR spectra, on-farm information, and single nucleotide polymorphisms (SNP) markers were blended to develop calibration equations for blood metabolites using the elastic net (ENet) approach, considering 3 models: (1) Model 1 (M1) including only NIR information, (2) Model 2 (M2) with both NIR and on-farm information, and (3) Model 3 (M3) combining NIR, on-farm and genomic information. Dimension reduction was considered for M3 by preselecting SNP markers from genome-wide association study (GWAS) results. RESULTS: Results indicate that M2 improved the predictive ability by an average of 19% for energy-related metabolites (glucose, cholesterol, NEFA, BHB, urea, and creatinine), 20% for liver function/hepatic damage, 7% for inflammation/innate immunity, 24% for oxidative stress metabolites, and 23% for minerals compared to M1. Meanwhile, M3 further enhanced the predictive ability by 34% for energy-related metabolites, 32% for liver function/hepatic damage, 22% for inflammation/innate immunity, 42.1% for oxidative stress metabolites, and 41% for minerals, compared to M1. We found improved predictive ability of M3 using selected SNP markers from GWAS results using a threshold of > 2.0 by 5% for energy-related metabolites, 9% for liver function/hepatic damage, 8% for inflammation/innate immunity, 22% for oxidative stress metabolites, and 9% for minerals. Slight reductions were observed for phosphorus (2%), ferric-reducing antioxidant power (1%), and glucose (3%). Furthermore, it was found that prediction accuracies are influenced by using more restrictive thresholds (-log10(P-value) > 2.5 and 3.0), with a lower increase in the predictive ability. CONCLUSION: Our results highlighted the potential of combining several sources of information, such as genetic markers, on-farm information, and in-line NIR infrared data improves the predictive ability of blood metabolites in dairy cattle, representing an effective strategy for large-scale in-line health monitoring in commercial herds.

4.
Poult Sci ; 103(7): 103737, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38669821

RESUMO

This study aimed to estimate genetic parameters for feeding behavior (FB) traits and to assess their genetic relationship with performance traits in group-housed broilers. In total, 99,472,151 visits were recorded for 95,711 birds between 2017 and 2022 using electronic feeders. The visits were first clustered into 2,667,617 daily observations for ten FB traits: daily feed intake (DFI), daily number of visits (NVIS), time spent at the feeders (TSF), number of visited feeders (NVF), visiting activity interval (VAI), feeding rate (FR), daily number of meals (NMEAL), average intake per meal (INTMEAL), number of visits per meal (VISMEAL) and interval between meals (MEALIVL). All FB traits were then considered as the average per bird across the feeding test period. Three growth traits (body weight at the start - SBW and at the end of the feeding test - FBW, and weight gain over the test period - BWG), and 2 feed efficiency (FE) traits (Feed Conversion Rate - FCR and Residual Feed Intake - RFI) were also recorded. The (co)variance components were estimated using multitrait animal mixed models. For growth and FE, the heritability (h2) estimates were moderate, ranging from 0.20 ± 0.01 (BWG) to 0.32 ± 0.02 (RFI). Overall, the h2 estimates for FB traits were higher than for productive traits, ranging from 0.31 ± 0.01 (DFI) to 0.56 ± 0.02 (TSF). DFI presented high genetic correlations (0.53-0.86) with all performance traits. Conversely, the remaining FB traits presented null to moderate genetic correlations with these traits, ranging from -0.38 to 0.42 for growth traits and between -0.14 and 0.25 for FE traits. Genetic selection for favorable feeding behavior is expected to exhibit a fast genetic response. The results suggest that it is possible to consider different feeding strategies without compromising the genetic progress of FE. Conversely, breeding strategies prioritizing a higher bird activity might result in lighter broiler lines in the long term, given the negative genetic correlations between visit-related traits (NV, NVF, and NMEAL) and growth traits (SBW and FBW).


Assuntos
Galinhas , Comportamento Alimentar , Animais , Galinhas/genética , Galinhas/fisiologia , Galinhas/crescimento & desenvolvimento , Masculino , Criação de Animais Domésticos/métodos , Abrigo para Animais , Feminino
5.
Sci Rep ; 14(1): 6404, 2024 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-38493207

RESUMO

Genomic selection (GS) offers a promising opportunity for selecting more efficient animals to use consumed energy for maintenance and growth functions, impacting profitability and environmental sustainability. Here, we compared the prediction accuracy of multi-layer neural network (MLNN) and support vector regression (SVR) against single-trait (STGBLUP), multi-trait genomic best linear unbiased prediction (MTGBLUP), and Bayesian regression (BayesA, BayesB, BayesC, BRR, and BLasso) for feed efficiency (FE) traits. FE-related traits were measured in 1156 Nellore cattle from an experimental breeding program genotyped for ~ 300 K markers after quality control. Prediction accuracy (Acc) was evaluated using a forward validation splitting the dataset based on birth year, considering the phenotypes adjusted for the fixed effects and covariates as pseudo-phenotypes. The MLNN and SVR approaches were trained by randomly splitting the training population into fivefold to select the best hyperparameters. The results show that the machine learning methods (MLNN and SVR) and MTGBLUP outperformed STGBLUP and the Bayesian regression approaches, increasing the Acc by approximately 8.9%, 14.6%, and 13.7% using MLNN, SVR, and MTGBLUP, respectively. Acc for SVR and MTGBLUP were slightly different, ranging from 0.62 to 0.69 and 0.62 to 0.68, respectively, with empirically unbiased for both models (0.97 and 1.09). Our results indicated that SVR and MTGBLUBP approaches were more accurate in predicting FE-related traits than Bayesian regression and STGBLUP and seemed competitive for GS of complex phenotypes with various degrees of inheritance.


Assuntos
Benchmarking , Polimorfismo de Nucleotídeo Único , Bovinos/genética , Animais , Teorema de Bayes , Modelos Genéticos , Fenótipo , Genômica/métodos , Genótipo
6.
J Dairy Sci ; 107(7): 4758-4771, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38395400

RESUMO

Identifying genome-enabled methods that provide more accurate genomic prediction is crucial when evaluating complex traits such as dairy cow behavior. In this study, we aimed to compare the predictive performance of traditional genomic prediction methods and deep learning algorithms for genomic prediction of milking refusals (MREF) and milking failures (MFAIL) in North American Holstein cows measured by automatic milking systems (milking robots). A total of 1,993,509 daily records from 4,511 genotyped Holstein cows were collected by 36 milking robot stations. After quality control, 57,600 SNPs were available for the analyses. Four genomic prediction methods were considered: Bayesian least absolute shrinkage and selection operator (LASSO), multiple layer perceptron (MLP), convolutional neural network (CNN), and GBLUP. We implemented the first 3 methods using the Keras and TensorFlow libraries in Python (v.3.9) but the GBLUP method was implemented using the BLUPF90+ family programs. The accuracy of genomic prediction (mean square error) for MREF and MFAIL was 0.34 (0.08) and 0.27 (0.08) based on LASSO, 0.36 (0.09) and 0.32 (0.09) for MLP, 0.37 (0.08) and 0.30 (0.09) for CNN, and 0.35 (0.09) and 0.31(0.09) based on GBLUP, respectively. Additionally, we observed a lower reranking of top selected individuals based on the MLP versus CNN methods compared with the other approaches for both MREF and MFAIL. Although the deep learning methods showed slightly higher accuracies than GBLUP, the results may not be sufficient to justify their use over traditional methods due to their higher computational demand and the difficulty of performing genomic prediction for nongenotyped individuals using deep learning procedures. Overall, this study provides insights into the potential feasibility of using deep learning methods to enhance genomic prediction accuracy for behavioral traits in livestock. Further research is needed to determine their practical applicability to large dairy cattle breeding programs.


Assuntos
Genômica , Aprendizado de Máquina , Animais , Bovinos/genética , Feminino , Indústria de Laticínios/métodos , Genótipo , Lactação/genética , Leite , Algoritmos , Fenótipo , Comportamento Animal
7.
Transl Anim Sci ; 7(1): txad118, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023419

RESUMO

Haemonchus contortus is the most pathogenic blood-feeding parasitic in sheep, causing anemia and consequently changes in the color of the ocular conjunctiva, from the deep red of healthy sheep to shades of pink to practically white of non-healthy sheep. In this context, the Famacha method has been created for detecting sheep unable to cope with the infection by H. contortus, through visual assessment of ocular conjunctiva coloration. Thus, the objectives of this study were (1) to extract ocular conjunctiva image features to automatically classify Famacha score and compare two classification models (multinomial logistic regression-MLR and random forest-RF) and (2) to evaluate the applicability of the best classification model on three sheep farms. The dataset consisted of 1,156 ocular conjunctiva images from 422 animals. RF model was used to segment the images, i.e., to select the pixels that belong to the ocular conjunctiva. After segmentation, the quantiles (1%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 99%) of color intensity in each image channel (red, blue, and green) were determined and used as explanatory variables in the classification models, and the Famacha scores 1 (non-anemic) to 5 (severely anemic) were the target classes to be predicted (scores 1 to 5, with 162, 255, 443, 266, and 30 images, respectively). For objective 1, the performance metrics (precision and sensitivity) were obtained using MLR and RF models considering data from all farms randomly split. For objective 2, a leave-one-farm-out cross-validation technique was used to assess prediction quality across three farms (farms A, B, and C, with 726, 205, and 225 images, respectively). The RF provided the best performances in predicting anemic animals, as indicated by the high values of sensitivity for Famacha score 3 (80.9%), 4 (46.2%), and 5 (60%) compared to the MLR model. The precision of the RF was 72.7% for Famacha score 1 and 62.5% for Famacha score 2. These results indicate that is possible to successfully predict Famacha score, especially for scores 2 to 4, in sheep via image analysis and RF model using ocular conjunctiva images collected in farm conditions. As expected, model validation excluding entire farms in cross-validation presented a lower prediction quality. Nonetheless, this setup is closer to reality because the developed models are supposed to be used across farms, including new ones, and with different environments and management conditions.

8.
Front Genet ; 14: 1201628, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37645058

RESUMO

Introduction: Spontaneous rupture of tendons and ligaments is common in several species including humans. In horses, degenerative suspensory ligament desmitis (DSLD) is an important acquired idiopathic disease of a major energy-storing tendon-like structure. DSLD risk is increased in several breeds, including the Peruvian Horse. Affected horses have often been used for breeding before the disease is apparent. Breed predisposition suggests a substantial genetic contribution, but heritability and genetic architecture of DSLD have not been determined. Methods: To identify genomic regions associated with DSLD, we recruited a reference population of 183 Peruvian Horses, phenotyped as DSLD cases or controls, and undertook a genome-wide association study (GWAS), a regional window variance analysis using local genomic partitioning, a signatures of selection (SOS) analysis, and polygenic risk score (PRS) prediction of DSLD risk. We also estimated trait heritability from pedigrees. Results: Heritability was estimated in a population of 1,927 Peruvian horses at 0.22 ± 0.08. After establishing a permutation-based threshold for genome-wide significance, 151 DSLD risk single nucleotide polymorphisms (SNPs) were identified by GWAS. Multiple regions of enriched local heritability were identified across the genome, with strong enrichment signals on chromosomes 1, 2, 6, 10, 13, 16, 18, 22, and the X chromosome. With SOS analysis, there were 66 genes with a selection signature in DSLD cases that was not present in the control group that included the TGFB3 gene. Pathways enriched in DSLD cases included proteoglycan metabolism, extracellular matrix homeostasis, and signal transduction pathways that included the hedgehog signaling pathway. The best PRS predictive performance was obtained when we fitted 1% of top SNPs using a Bayesian Ridge Regression model which achieved the highest mean of R2 on both the probit and logit liability scales, indicating a strong predictive performance. Discussion: We conclude that within-breed GWAS of DSLD in the Peruvian Horse has further confirmed that moderate heritability and a polygenic architecture underlies the trait and identified multiple DSLD SNP associations in novel tendinopathy candidate genes influencing disease risk. Pathways enriched with DSLD risk variants include ones that influence glycosaminoglycan metabolism, extracellular matrix homeostasis, signal transduction pathways.

9.
Transl Anim Sci ; 7(1): txad064, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37601954

RESUMO

Sire selection for beef on dairy crosses plays an important role in livestock systems as it may affect future performance and carcass traits of growing and finishing crossbred cattle. The phenotypic variation found in beef on dairy crosses has raised concerns from meat packers due to animals with dairy-type carcass characteristics. The use of morphometric measurements may help to understand the phenotypic structures of sire progeny for selecting animals with greater performance. In addition, due to the relationship with growth, these measurements could be used to early predict the performance until the transition from dairy farms to sales. The objectives of this study were 1) to evaluate the effect of different beef sires and breeds on the morphometric measurements of crossbred calves including cannon bone (CB), forearm (FA), hip height (HH), face length (FL), face width (FW) and growth performance; and (2) to predict the weight gain from birth to transition from dairy farms to sale (WG) and the body weight at sale (BW) using such morphometric measurements obtained at first days of animals' life. CB, FA, HH, FL, FW, and weight at 7 ±â€…5 d (BW7) (Table 1) were measured on 206 calves, from four different sire breeds [Angus (AN), SimAngus (SA), Simmental (SI), and Limousin (LI)], from five farms. To evaluate the morphometric measurements at the transition from dairy farms to sale and animal performance 91 out of 206 calves sourced from four farms, and offspring of two different sires (AN and SA) were used. To predict the WG and BW, 97 calves, and offspring of three different sires (AN, SA, and LI) were used. The data were analyzed using a mixed model, considering farm and sire as random effects. To predict WG and BW, two linear models (including or not the morphometric measurements) were used, and a leave-one-out cross-validation strategy was used to evaluate their predictive quality. The HH and BW7 were 7.67% and 10.7% higher (P < 0.05) in SA crossbred calves compared to AN, respectively. However, the ADG and adjusted body weight to 120 d were 14.3% and 9.46% greater (P < 0.05) in AN compared to SA. The morphometric measurements improved the model's predictive performance for WG and BW. In conclusion, morphometric measurements at the first days of calves' life can be used to predict animals' performance in beef on dairy. Such a strategy could lead to optimized management decisions and greater profitability in dairy farms.

10.
Stem Cells Dev ; 32(17-18): 515-523, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37345692

RESUMO

Cloning cattle using somatic cell nuclear transfer (SCNT) is inefficient. Although the rate of development of SCNT embryos in vitro is similar to that of fertilized embryos, most fail to develop into healthy calves. In this study, we aimed to identify developmentally competent embryos according to blastocyst cell composition and perform transcriptome analysis of single embryos. Transgenic SCNT embryos expressing nuclear-localized HcRed gene at day 7 of development were imaged by confocal microscopy for cell counting and individually transferred to recipient heifers. Pregnancy rates were determined by ultrasonography. Embryos capable of establishing pregnancy by day 35 had an average of 117 ± 6 total cells, whereas embryos with an average of 128 ± 5 cells did not establish pregnancy (P < 0.05). A lesser average number of 41 ± 3 cells in the inner cell mass (ICM) also resulted in pregnancies (<0.05) than a greater number of 48 ± 2 cells in the ICM. Single embryos were then subjected to RNA sequencing for transcriptome analysis. Using weighted gene coexpression network analysis, we identified clusters of genes in which gene expression correlated with the number of total cells or ICM cells. Gene ontology analysis of these clusters revealed enriched biological processes in coenzyme metabolic process, intracellular signaling cascade, and glucose catabolic process, among others. We concluded that SCNT embryos with fewer total and ICM cell numbers resulted in greater pregnancy establishment rates and that these differences are reflected in the transcriptome of such embryos.


Assuntos
Desenvolvimento Embrionário , Transcriptoma , Gravidez , Animais , Bovinos , Feminino , Transcriptoma/genética , Desenvolvimento Embrionário/genética , Blastocisto , Técnicas de Transferência Nuclear/veterinária , Clonagem de Organismos/métodos , Contagem de Células
11.
J Mammary Gland Biol Neoplasia ; 28(1): 11, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37249685

RESUMO

Many studies on bovine mammary glands focus on one stage of development. Often missing in those studies are repeated measures of development from the same animals. As milk production is directly affected by amount of parenchymal tissue within the udder, understanding mammary gland growth along with visualization of its structures during development is essential. Therefore, analysis of ultrasound and histology data from the same animals would result in better understanding of mammary development over time. Thus, this research aimed to describe mammary gland development using non-invasive and invasive tools to delineate growth rate of glandular tissue responsible for potential future milk production. Mammary gland ultrasound images, biopsy samples, and blood samples were collected from 36 heifer dairy calves beginning at 10 weeks of age, and evaluated at 26, 39, and 52 weeks. Parenchyma was quantified at 10 weeks of age using ultrasound imaging and histological evaluation, and average echogenicity was utilized to quantify parenchyma at later stages of development. A significant negative correlation was detected between average echogenicity of parenchyma at 10 weeks and total adipose as a percent of histological whole tissue at 52 weeks. Additionally, a negative correlation between average daily gain at 10 and 26 weeks and maximum echogenicity at 52 weeks was present. These results suggest average daily gain and mammary gland development prior to 39 weeks of age is associated with development of the mammary gland after 39 weeks. These findings could be predictors of future milk production, however this must be further explored.


Assuntos
Dieta , Obesidade , Bovinos , Animais , Feminino , Glândulas Mamárias Animais/diagnóstico por imagem , Tecido Parenquimatoso , Leite/química
12.
Animals (Basel) ; 13(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37238109

RESUMO

The objective of this study was to evaluate different methods of predicting body weight (BW) and hot carcass weight (HCW) from biometric measurements obtained through three-dimensional images of Nellore cattle. We collected BW and HCW of 1350 male Nellore cattle (bulls and steers) from four different experiments. Three-dimensional images of each animal were obtained using the Kinect® model 1473 sensor (Microsoft Corporation, Redmond, WA, USA). Models were compared based on root mean square error estimation and concordance correlation coefficient. The predictive quality of the approaches used multiple linear regression (MLR); least absolute shrinkage and selection operator (LASSO); partial least square (PLS), and artificial neutral network (ANN) and was affected not only by the conditions (set) but also by the objective (BW vs. HCW). The most stable for BW was the ANN (Set 1: RMSEP = 19.68; CCC = 0.73; Set 2: RMSEP = 27.22; CCC = 0.66; Set 3: RMSEP = 27.23; CCC = 0.70; Set 4: RMSEP = 33.74; CCC = 0.74), which showed predictive quality regardless of the set analyzed. However, when evaluating predictive quality for HCW, the models obtained by LASSO and PLS showed greater quality over the different sets. Overall, the use of three-dimensional images was able to predict BW and HCW in Nellore cattle.

13.
G3 (Bethesda) ; 13(8)2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37216670

RESUMO

This study investigates nonlinear kernels for multitrait (MT) genomic prediction using support vector regression (SVR) models. We assessed the predictive ability delivered by single-trait (ST) and MT models for 2 carcass traits (CT1 and CT2) measured in purebred broiler chickens. The MT models also included information on indicator traits measured in vivo [Growth and feed efficiency trait (FE)]. We proposed an approach termed (quasi) multitask SVR (QMTSVR), with hyperparameter optimization performed via genetic algorithm. ST and MT Bayesian shrinkage and variable selection models [genomic best linear unbiased predictor (GBLUP), BayesC (BC), and reproducing kernel Hilbert space (RKHS) regression] were employed as benchmarks. MT models were trained using 2 validation designs (CV1 and CV2), which differ if the information on secondary traits is available in the testing set. Models' predictive ability was assessed with prediction accuracy (ACC; i.e. the correlation between predicted and observed values, divided by the square root of phenotype accuracy), standardized root-mean-squared error (RMSE*), and inflation factor (b). To account for potential bias in CV2-style predictions, we also computed a parametric estimate of accuracy (ACCpar). Predictive ability metrics varied according to trait, model, and validation design (CV1 or CV2), ranging from 0.71 to 0.84 for ACC, 0.78 to 0.92 for RMSE*, and between 0.82 and 1.34 for b. The highest ACC and smallest RMSE* were achieved with QMTSVR-CV2 in both traits. We observed that for CT1, model/validation design selection was sensitive to the choice of accuracy metric (ACC or ACCpar). Nonetheless, the higher predictive accuracy of QMTSVR over MTGBLUP and MTBC was replicated across accuracy metrics, besides the similar performance between the proposed method and the MTRKHS model. Results showed that the proposed approach is competitive with conventional MT Bayesian regression models using either Gaussian or spike-slab multivariate priors.


Assuntos
Galinhas , Herança Multifatorial , Animais , Galinhas/genética , Teorema de Bayes , Heurística , Fenótipo , Modelos Genéticos , Genótipo
14.
G3 (Bethesda) ; 13(9)2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36848195

RESUMO

Subfertility represents one major challenge to enhancing dairy production and efficiency. Herein, we use a reproductive index (RI) expressing the predicted probability of pregnancy following artificial insemination (AI) with Illumina 778K genotypes to perform single and multi-locus genome-wide association analyses (GWAA) on 2,448 geographically diverse U.S. Holstein cows and produce genomic heritability estimates. Moreover, we use genomic best linear unbiased prediction (GBLUP) to investigate the potential utility of the RI by performing genomic predictions with cross validation. Notably, genomic heritability estimates for the U.S. Holstein RI were moderate (h2 = 0.1654 ± 0.0317-0.2550 ± 0.0348), while single and multi-locus GWAA revealed overlapping quantitative trait loci (QTL) on BTA6 and BTA29, including the known QTL for the daughter pregnancy rate (DPR) and cow conception rate (CCR). Multi-locus GWAA revealed seven additional QTL, including one on BTA7 (60 Mb) which is adjacent to a known heifer conception rate (HCR) QTL (59 Mb). Positional candidate genes for the detected QTL included male and female fertility loci (i.e. spermatogenesis and oogenesis), meiotic and mitotic regulators, and genes associated with immune response, milk yield, enhanced pregnancy rates, and the reproductive longevity pathway. Based on the proportion of the phenotypic variance explained (PVE), all detected QTL (n = 13; P ≤ 5e - 05) were estimated to have moderate (1.0% < PVE ≤ 2.0%) or small effects (PVE ≤ 1.0%) on the predicted probability of pregnancy. Genomic prediction using GBLUP with cross validation (k = 3) produced mean predictive abilities (0.1692-0.2301) and mean genomic prediction accuracies (0.4119-0.4557) that were similar to bovine health and production traits previously investigated.


Assuntos
Fertilidade , Estudo de Associação Genômica Ampla , Gravidez , Bovinos , Animais , Feminino , Masculino , Fertilidade/genética , Reprodução , Locos de Características Quantitativas , Genômica , Polimorfismo de Nucleotídeo Único
15.
Animals (Basel) ; 13(3)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36766263

RESUMO

This study investigated the feasibility of using easy-to-measure phenotypic traits to predict sheep resistant, resilient, and susceptible to gastrointestinal nematodes, compared the classification performance of multinomial logistic regression (MLR), linear discriminant analysis (LDA), random forest (RF), and artificial neural network (ANN) methods, and evaluated the applicability of the best classification model on each farm. The database comprised 3654 records of 1250 Santa Inês sheep from 6 farms. The animals were classified into resistant (2605 records), resilient (939 records), and susceptible (110 records) according to fecal egg count and packed cell volume. A random oversampling method was performed to balance the dataset. The classification methods were fitted using the information of age class, the month of record, farm, sex, Famacha© degree, body weight, and body condition score as predictors, and the resistance, resilience, and susceptibility to gastrointestinal nematodes as the target classes to be predicted considering data from all farms randomly. An additional leave-one-farm-out cross-validation technique was used to assess prediction quality across farms. The MLR and LDA models presented good performances in predicting susceptible and resistant animals. The results suggest that the use of readily available records and easily measurable traits may provide useful information for supporting management decisions at the farm level.

16.
J Anim Breed Genet ; 140(1): 1-12, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36239216

RESUMO

This study was carried out to evaluate the advantage of preselecting SNP markers using Markov blanket algorithm regarding the accuracy of genomic prediction for carcass and meat quality traits in Nellore cattle. This study considered 3675, 3680, 3660 and 524 records of rib eye area (REA), back fat thickness (BF), rump fat (RF), and Warner-Bratzler shear force (WBSF), respectively, from the Nellore Brazil Breeding Program. The animals have been genotyped using low-density SNP panel (30 k), and subsequently imputed for arrays with 777 k SNPs. Four Bayesian specifications of genomic regression models, namely Bayes A, Bayes B, Bayes Cπ and Bayesian Ridge Regression methods were compared in terms of prediction accuracy using a five folds cross-validation. Prediction accuracy for REA, BF and RF was all similar using the Bayesian Alphabet models, ranging from 0.75 to 0.95. For WBSF, the predictive ability was higher using Bayes B (0.47) than other methods (0.39 to 0.42). Although the prediction accuracies using Markov blanket of SNP markers were lower than those using all SNPs, for WBSF the relative gain was lower than 13%. With a subset of informative SNPs markers, identified using Markov blanket, probably, is possible to capture a large proportion of the genetic variance for WBSF. The development of low-density and customized arrays using Markov blanket might be cost-effective to perform a genomic selection for this trait, increasing the number of evaluated animals, improving the management decisions based on genomic information and applying genomic selection on a large scale.


Assuntos
Genômica , Bovinos/genética , Animais , Teorema de Bayes , Brasil
17.
Front Genet ; 13: 913354, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531249

RESUMO

Here, we report the use of genome-wide association study (GWAS) for the analysis of canine whole-genome sequencing (WGS) repository data using breed phenotypes. Single-nucleotide polymorphisms (SNPs) were called from WGS data from 648 dogs that included 119 breeds from the Dog10K Genomes Project. Next, we assigned breed phenotypes for hip dysplasia (Orthopedic Foundation for Animals (OFA) HD, n = 230 dogs from 27 breeds; hospital HD, n = 279 dogs from 38 breeds), elbow dysplasia (ED, n = 230 dogs from 27 breeds), and anterior cruciate ligament rupture (ACL rupture, n = 279 dogs from 38 breeds), the three most important canine spontaneous complex orthopedic diseases. Substantial morbidity is common with these diseases. Previous within- and between-breed GWAS for HD, ED, and ACL rupture using array SNPs have identified disease-associated loci. Individual disease phenotypes are lacking in repository data. There is a critical knowledge gap regarding the optimal approach to undertake categorical GWAS without individual phenotypes. We considered four GWAS approaches: a classical linear mixed model, a haplotype-based model, a binary case-control model, and a weighted least squares model using SNP average allelic frequency. We found that categorical GWAS was able to validate HD candidate loci. Additionally, we discovered novel candidate loci and genes for all three diseases, including FBX025, IL1A, IL1B, COL27A1, SPRED2 (HD), UGDH, FAF1 (ED), TGIF2 (ED & ACL rupture), and IL22, IL26, CSMD1, LDHA, and TNS1 (ACL rupture). Therefore, categorical GWAS of ancestral dog populations may contribute to the understanding of any disease for which breed epidemiological risk data are available, including diseases for which GWAS has not been performed and candidate loci remain elusive.

18.
Front Cell Infect Microbiol ; 12: 940966, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275031

RESUMO

Leptospirosis is a neglected disease of man and animals that affects nearly half a million people annually and causes considerable economic losses. Current human vaccines are inactivated whole-cell preparations (bacterins) of Leptospira spp. that provide strong homologous protection yet fail to induce a cross-protective immune response. Yearly boosters are required, and serious side-effects are frequently reported so the vaccine is licensed for use in humans in only a handful of countries. Novel universal vaccines require identification of conserved surface-exposed epitopes of leptospiral antigens. Outer membrane ß-barrel proteins (ßb-OMPs) meet these requirements and have been successfully used as vaccines for other diseases. We report the evaluation of 22 constructs containing protein fragments from 33 leptospiral ßb-OMPs, previously identified by reverse and structural vaccinology and cell-surface immunoprecipitation. Three-dimensional structures for each leptospiral ßb-OMP were predicted by I-TASSER. The surface-exposed epitopes were predicted using NetMHCII 2.2 and BepiPred 2.0. Recombinant constructs containing regions from one or more ßb-OMPs were cloned and expressed in Escherichia coli. IMAC-purified recombinant proteins were adsorbed to an aluminium hydroxide adjuvant to produce the vaccine formulations. Hamsters (4-6 weeks old) were vaccinated with 2 doses containing 50 - 125 µg of recombinant protein, with a 14-day interval between doses. Immunoprotection was evaluated in the hamster model of leptospirosis against a homologous challenge (10 - 20× ED50) with L. interrogans serogroup Icterohaemorrhagiae serovar Copenhageni strain Fiocruz L1-130. Of the vaccine formulations, 20/22 were immunogenic and induced significant humoral immune responses (IgG) prior to challenge. Four constructs induced significant protection (100%, P < 0.001) and sterilizing immunity in two independent experiments, however, this was not reproducible in subsequent evaluations (0 - 33.3% protection, P > 0.05). The lack of reproducibility seen in these challenge experiments and in other reports in the literature, together with the lack of immune correlates and commercially available reagents to characterize the immune response, suggest that the hamster may not be the ideal model for evaluation of leptospirosis vaccines and highlight the need for evaluation of alternative models, such as the mouse.


Assuntos
Leptospira , Leptospirose , Cricetinae , Humanos , Camundongos , Animais , Hidróxido de Alumínio , Reprodutibilidade dos Testes , Leptospirose/prevenção & controle , Vacinas Bacterianas , Antígenos de Bactérias/genética , Proteínas Recombinantes , Escherichia coli , Imunoglobulina G , Epitopos
19.
Genet Sel Evol ; 54(1): 53, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35883024

RESUMO

BACKGROUND: Feed efficiency during lactation involves a set of phenotypic traits that form a complex system, with some traits exerting causal effects on the others. Information regarding such interrelationships can be used to predict the effect of external interventions on the system, and ultimately to optimize management practices and multi-trait selection strategies. Structural equation models can be used to infer the magnitude of the different causes of such interrelationships. The causal network necessary to fit structural equation models can be inferred using the inductive causation (IC) algorithm. By implementing these statistical tools, we inferred the causal association between the main energy sources and sinks involved in sow lactation feed efficiency for the first time, i.e., daily lactation feed intake (dLFI) in kg/day, daily sow weight balance (dSWB) in kg/day, daily litter weight gain (dLWG) in kg/day, daily back fat thickness balance (dBFTB) in mm/day, and sow metabolic body weight (SMBW) in kg0.75. Then, we tested several selection strategies based on selection indices, with or without dLFI records, to improve sow efficiency during lactation. RESULTS: The IC algorithm using 95% highest posterior density (HPD95%) intervals resulted in a fully directed acyclic graph, in which dLFI and dLWG affected dSWB, the posterior mean of the corresponding structural coefficients (PMλ) being 0.12 and - 0.03, respectively. In turn, dSWB influenced dBFTB and SMBW, with PMλ equal to 0.70 and - 1.22, respectively. Multiple indirect effects contributed to the variances and covariances among the analyzed traits, with the most relevant indirect effects being those involved in the association between dSWB and dBFTB and between dSWB and SMBW. Selection strategies with or without phenotypic information on dLFI, or that hold this trait constant, led to the same pattern and similar responses in dLFI, dSWB, and dLWG. CONCLUSIONS: Selection based on an index including only dBFTB and dLWG records can reduce dLFI, keep dSWB constant or increase it, and increase dLWG. However, a favorable response for all three traits is probably not achievable. Holding the amount of feed provided to the sows constant did not offer an advantage in terms of response over the other strategies.


Assuntos
Ingestão de Alimentos , Lactação , Ração Animal/análise , Animais , Feminino , Tamanho da Ninhada de Vivíparos , Fenótipo , Gravidez , Suínos/genética , Aumento de Peso
20.
G3 (Bethesda) ; 12(10)2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-35866615

RESUMO

Degenerative suspensory ligament desmitis is a progressive idiopathic condition that leads to scarring and rupture of suspensory ligament fibers in multiple limbs in horses. The prevalence of degenerative suspensory ligament desmitis is breed related. Risk is high in the Peruvian Horse, whereas pony and draft breeds have low breed risk. Degenerative suspensory ligament desmitis occurs in families of Peruvian Horses, but its genetic architecture has not been definitively determined. We investigated contrasts between breeds with differing risk of degenerative suspensory ligament desmitis and identified associated risk variants and candidate genes. We analyzed 670k single nucleotide polymorphisms from 10 breeds, each of which was assigned one of the four breed degenerative suspensory ligament desmitis risk categories: control (Belgian, Icelandic Horse, Shetland Pony, and Welsh Pony), low risk (Lusitano, Arabian), medium risk (Standardbred, Thoroughbred, Quarter Horse), and high risk (Peruvian Horse). Single nucleotide polymorphisms were used for genome-wide association and selection signature analysis using breed-assigned risk levels. We found that the Peruvian Horse is a population with low effective population size and our breed contrasts suggest that degenerative suspensory ligament desmitis is a polygenic disease. Variant frequency exhibited signatures of positive selection across degenerative suspensory ligament desmitis breed risk groups on chromosomes 7, 18, and 23. Our results suggest degenerative suspensory ligament desmitis breed risk is associated with disturbances to suspensory ligament homeostasis where matrix responses to mechanical loading are perturbed through disturbances to aging in tendon (PIN1), mechanotransduction (KANK1, KANK2, JUNB, SEMA7A), collagen synthesis (COL4A1, COL5A2, COL5A3, COL6A5), matrix responses to hypoxia (PRDX2), lipid metabolism (LDLR, VLDLR), and BMP signaling (GREM2). Our results do not suggest that suspensory ligament proteoglycan turnover is a primary factor in disease pathogenesis.


Assuntos
Doenças dos Cavalos , Doenças Musculares , Animais , Estudo de Associação Genômica Ampla , Genômica , Doenças dos Cavalos/genética , Doenças dos Cavalos/patologia , Cavalos/genética , Ligamentos/metabolismo , Ligamentos/patologia , Mecanotransdução Celular , Doenças Musculares/metabolismo , Proteoglicanas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA