Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Parasit Vectors ; 10(1): 613, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29258559

RESUMO

BACKGROUND: It is well known that reactive oxygen species (ROS) and reactive nitrogen species (RNS) are involved in the control of pathogens and microbiota in insects. However, the knowledge of the role of ROS and RNS in tick-pathogen and tick-microbiota interactions is limited. Here, we evaluated the immune-related redox metabolism of the embryonic cell line BME26 from the cattle tick Rhipicephalus microplus in response to Anaplasma marginale infection. METHODS: A high-throughput qPCR approach was used to determine the expression profile of 16 genes encoding proteins involved in either production or detoxification of ROS and RNS in response to different microbial challenges. In addition, the effect of RNAi-mediated gene silencing of catalase, glutathione peroxidase, thioredoxin and protein oxidation resistance 1 in the control of infection with A. marginale was evaluated. RESULTS: Infection with A. marginale resulted in downregulation of the genes encoding ROS-generating enzymes dual oxidase and endoplasmic reticulum oxidase. In contrast, the genes encoding the antioxidant enzymes superoxide dismutase, catalase, glutathione peroxidase, glutathione S-transferase, thioredoxin, thioredoxin reductase and peroxiredoxin were upregulated. The gene expression pattern in response to infection with Rickettsia rickettsii and exposure to heat-killed microorganisms, Micrococcus luteus, Enterobacter cloacae or S. cerevisiae was the opposite of that triggered by A. marginale challenge. The simultaneous silencing of three genes, catalase, glutathione peroxidase, and thioredoxin as well as the oxidation resistance 1 gene by RNAi apparently favoured the colonization of BME26 cells by A. marginale, suggesting that the antioxidant response might play a role in the control of infection. CONCLUSIONS: Taken together, our results suggest that a general response of tick cells upon microbial stimuli is to increase ROS/RNS production. In contrast, A. marginale infection triggers an opposite profile, suggesting that this pathogen might manipulate the tick redox metabolism to evade the deleterious effect of the oxidant-based innate immune response.


Assuntos
Anaplasma marginale/imunologia , Células-Tronco Embrionárias/imunologia , Células-Tronco Embrionárias/microbiologia , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Rhipicephalus , Animais , Linhagem Celular , Perfilação da Expressão Gênica , Imunidade Inata , Oxirredução , Reação em Cadeia da Polimerase em Tempo Real
2.
Braz. arch. biol. technol ; 54(2): 399-404, Mar.-Apr. 2011. ilus
Artigo em Inglês | LILACS | ID: lil-582390

RESUMO

In the present study, a fragment of the VP28 coding sequence from a Brazilian WSSV isolate (BrVP28) was cloned, sequenced and expressed in E. coli BL21(DE3) pLysS strain in order to produce the VP28 carboxyl-terminal hydrophilic region. The expression resulted in a protein of about 21 kDa, which was purified under denaturing conditions, resulting in a final highly purified BrVP28 preparation. The recombinant protein obtained can be used in several biotechnology applications, such as the production of monoclonal antibodies which could be used in the development of diagnostic tools as well as in the studies on the characterization of white spot syndrome virus (WSSV) isolated in Brazil.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA