Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37017376

RESUMO

Enzymatic systems achieve the catalytic conversion of methane at room temperature under mild conditions. In this study, varying thermodynamic and kinetic parameters, we show that the reforming of methane by water (MWR, CH4 + H2O → CO + 3H2) and the water-gas shift reaction (WGS, CO + H2O → H2 + CO2), two essential processes to integrate fossil fuels toward a H2 energy loop, can be achieved on ZrO2/Cu(111) catalysts near room temperature. Measurements of ambient-pressure X-ray photoelectron spectroscopy and mass spectrometry, combined with density functional calculations and kinetic Monte Carlo simulations, were used to study the behavior of the inverse oxide/metal catalysts. The superior performance is associated with a unique zirconia-copper interface, where multifunctional sites involving zirconium, oxygen, and copper work coordinatively to dissociate methane and water at 300 K and move forward the MWR and WGS processes.

2.
Phys Chem Chem Phys ; 23(32): 17186-17196, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34346423

RESUMO

To activate methane at low or medium temperatures is a difficult task and a pre-requisite for the conversion of this light alkane into high value chemicals. Herein, we report the preparation and characterizations of novel SnOx/Cu2O/Cu(111) interfaces that enable low-temperature methane activation. Scanning tunneling microscopy identified small, well-dispersed SnOx nanoclusters on the Cu2O/Cu(111) substrate with an average size of 8 Å, and such morphology was sustained up to 450 K in UHV annealing. Ambient pressure X-ray photoelectron spectroscopy showed that hydrocarbon species (CHx groups), the product of methane activation, were formed on SnOx/Cu2O/Cu(111) at a temperature as low as 300 K. An essential role of the SnOx-Cu2O interface was evinced by the SnOx coverage dependence. Systems with a small amount of tin oxide, 0.1-0.2 ML coverage, produced the highest concentration of adsorbed CHx groups. Calculations based on density functional theory showed a drastic reduction in the activation barrier for C-H bond cleavage when going from Cu2O/Cu(111) to SnOx/Cu2O/Cu(111). On the supported SnOx, the dissociation of methane was highly exothermic (ΔE∼-35 kcal mol-1) and the calculated barrier for activation (∼20 kcal mol-1) could be overcome at 300-500 K, target temperatures for the conversion of methane to high value chemicals.

3.
ACS Appl Mater Interfaces ; 13(12): 14077-14090, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33751889

RESUMO

The discovery of new and versatile strategies for the immobilization of molecular water-oxidation catalysts (WOCs) is crucial for developing clean energy conversion devices [e.g., (photo)electrocatalytic cells for water splitting]. The traditional approach for surface attachment to transparent conductive oxides [e.g., fluorine doped tin oxide (FTO)] is via synthetic modification of the ligand architecture to incorporate functional groups such as carboxylic acids (-COOH) or phosphonates (-PO3H2) prior to immobilization. However, challenges arising from desorption and the cumbersome derivatizations steps have limited the scope and applications of surface-bound WOCs. Herein, we report the successful immobilization of underivatized Ru(II)-based WOCs (Ru-Cat1 = [Ru(tpy) (bpy) (H2O)]2+ (tpy = 2,2':6'2″-terpyridine and bpy = 2,2'-bipyridine) and Ru-Cat2 = [Ru(Mebimpy) (bpy) (H2O)]2+ (Mebimpy = 2,6-bis(1-methylbenzimidazol-2-yl) pyridine)) and the Ru(II) polypyridyl chromophore Ru-C3 = [Ru(bpy)3]2+ onto a FTO plasma-grafted poly(acrylic acid) surface (PAA|FTO). Various characterization techniques such as attenuated total reflectance Fourier transform infrared spectroscopy, scanning electron microscopy, atomic force microscopy, and cyclic voltammetry measurements provide evidence for the plasma-induced grafted PAA|FTO film and immobilization. Surface stability and electrocatalytic properties of these new hybrid composite films upon cycling were investigated at different pH values. Immobilized Ru-Cat1 and Ru-Cat2 onto PAA|FTO displayed pH-dependent (RuIII/RuII) couples and onset potentials indicative of PCET (proton-coupled electron transfer) reactions. Based on cyclic voltammetry results and spectroscopic monitoring, the immobilized WOCs Ru-Cat1 and Ru-Cat2 exhibited a higher surface stability in neutral aqueous solutions relative to Ru-C3 upon electrochemical oxidation. We attribute the surface PCET and stability to the presence of a water ligand in the coordination sphere of immobilized Ru-Cat1 and Ru-Cat2 which can H-bond with negatively charged carboxylate groups of the cross-linked PAA brushes. Our findings demonstrate that the plasma-grafted polymeric network onto FTO offers a versatile platform to directly anchor unmodified homogeneous WOCs or chromophores for potential applications in solar-to-fuel energy conversion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA