Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am J Med Genet A ; 185(9): 2636-2645, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33913595

RESUMO

The increasing demand for advanced genomic services has finally come to the attention of healthcare systems and stakeholders who are now eager to find creative solutions to increase the pool of genomic literate providers. Training in genetics and dysmorphology has historically been conducted as a self-driven practice in pattern recognition, ideally within a formal or informal apprenticeship supervised by a master diagnostician. In recent times, case-based learning, framed by flipped classroom pedagogy have become the preferred teaching methods for complex medical topics such as genetics and genomics. To illuminate this perspective, our article was written in honor of the teaching style and pedagogy of Dr John M. Graham Jr and his lifelong commitment to medical education and mentoring.


Assuntos
Currículo/tendências , Educação Médica/tendências , Genética Médica/educação , Ensino/tendências , Humanos
2.
Front Genet ; 10: 611, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31417602

RESUMO

The clinical utility of computational phenotyping for both genetic and rare diseases is increasingly appreciated; however, its true potential is yet to be fully realized. Alongside the growing clinical and research availability of sequencing technologies, precise deep and scalable phenotyping is required to serve unmet need in genetic and rare diseases. To improve the lives of individuals affected with rare diseases through deep phenotyping, global big data interrogation is necessary to aid our understanding of disease biology, assist diagnosis, and develop targeted treatment strategies. This includes the application of cutting-edge machine learning methods to image data. As with most digital tools employed in health care, there are ethical and data governance challenges associated with using identifiable personal image data. There are also risks with failing to deliver on the patient benefits of these new technologies, the biggest of which is posed by data siloing. The Minerva Initiative has been designed to enable the public good of deep phenotyping while mitigating these ethical risks. Its open structure, enabling collaboration and data sharing between individuals, clinicians, researchers and private enterprise, is key for delivering precision public health.

3.
Genome Biol ; 19(1): 50, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29636086

RESUMO

BACKGROUND: Early life exposure to adverse environments affects cardiovascular and metabolic systems in the offspring. These programmed effects are transmissible to a second generation through both male and female lines, suggesting germline transmission. We have previously shown that prenatal overexposure to the synthetic glucocorticoid dexamethasone (Dex) in rats reduces birth weight in the first generation (F1), a phenotype which is transmitted to a second generation (F2), particularly through the male line. We hypothesize that Dex exposure affects developing germ cells, resulting in transmissible alterations in DNA methylation, histone marks and/or small RNA in the male germline. RESULTS: We profile epigenetic marks in sperm from F1 Sprague Dawley rats expressing a germ cell-specific GFP transgene following Dex or vehicle treatment of the mothers, using methylated DNA immunoprecipitation sequencing, small RNA sequencing and chromatin immunoprecipitation sequencing for H3K4me3, H3K4me1, H3K27me3 and H3K9me3. Although effects on birth weight are transmitted to the F2 generation through the male line, no differences in DNA methylation, histone modifications or small RNA were detected between germ cells and sperm from Dex-exposed animals and controls. CONCLUSIONS: Although the phenotype is transmitted to a second generation, we are unable to detect specific changes in DNA methylation, common histone modifications or small RNA profiles in sperm. Dex exposure is associated with more variable 5mC levels, particularly at non-promoter loci. Although this could be one mechanism contributing to the observed phenotype, other germline epigenetic modifications or non-epigenetic mechanisms may be responsible for the transmission of programmed effects across generations in this model.


Assuntos
Dexametasona/farmacologia , Epigênese Genética/efeitos dos fármacos , Glucocorticoides/farmacologia , Exposição Materna , Animais , Peso ao Nascer/efeitos dos fármacos , Metilação de DNA , Feminino , Código das Histonas , Masculino , Pequeno RNA não Traduzido/metabolismo , Ratos Sprague-Dawley , Espermatozoides/metabolismo
4.
Clin Case Rep ; 5(6): 968-974, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28588849

RESUMO

This case report describes a patient with ankyloglossia, oligodontia, unilateral hypoplasia of the zygoma and mandible, along with bilateral distal reduction anomalies of his limbs without long bone abnormalities. This may represent a mild variant of oromandibular limb hypogenesis syndrome, expanding the phenotypic spectrum, or a previously unrecognized malformation syndrome.

5.
BMC Med Genet ; 17(1): 42, 2016 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-27282200

RESUMO

BACKGROUND: KCNH1 encodes a voltage-gated potassium channel that is predominantly expressed in the central nervous system. Mutations in this gene were recently found to be responsible for Temple-Baraitser Syndrome (TMBTS) and Zimmermann-Laband syndrome (ZLS). METHODS: Here, we report a new case of TMBTS diagnosed in a Lebanese child. Whole genome sequencing was carried out on DNA samples of the proband and his parents to identify mutations associated with this disease. Sanger sequencing was performed to confirm the presence of detected variants. RESULTS: Whole genome sequencing revealed three missense mutations in TMBTS patient: c.1042G > A in KCNH1, c.2131 T > C in STK36, and c.726C > A in ZNF517. According to all predictors, mutation in KCNH1 is damaging de novo mutation that results in substitution of Glycine by Arginine, i.e., p.(Gly348Arg). This mutation was already reported in a patient with ZLS that could affect the connecting loop between helices S4-S5 of KCNH1 with a gain of function effect. CONCLUSIONS: Our findings demonstrate that KCNH1 mutations cause TMBTS and expand the mutational spectrum of KCNH1 in TMBTS. In addition, all cases of TMBTS were reviewed and compared to ZLS. We suggest that the two syndromes are a continuum and that the variability in the phenotypes is the result of the involvement of genetic modifiers.


Assuntos
Anormalidades Múltiplas/genética , Anormalidades Craniofaciais/genética , Fibromatose Gengival/genética , Hallux/anormalidades , Deformidades Congênitas da Mão/genética , Deficiência Intelectual/genética , Unhas Malformadas/genética , Polegar/anormalidades , Anormalidades Múltiplas/diagnóstico , Anormalidades Craniofaciais/diagnóstico , DNA/química , DNA/isolamento & purificação , DNA/metabolismo , Análise Mutacional de DNA , Canais de Potássio Éter-A-Go-Go/genética , Fibromatose Gengival/diagnóstico , Deformidades Congênitas da Mão/diagnóstico , Humanos , Lactente , Deficiência Intelectual/diagnóstico , Masculino , Mutação de Sentido Incorreto , Unhas Malformadas/diagnóstico , Proteínas Serina-Treonina Quinases/genética , Polegar/diagnóstico por imagem , Dedos do Pé/diagnóstico por imagem
6.
Epigenetics ; 11(2): 103-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26889791

RESUMO

Glucocorticoids are widely used in threatened preterm labor to promote maturation in many organ systems in preterm babies and have significant beneficial effects on morbidity and mortality. We performed transcriptional profiling in fetal liver in a rat model of prenatal glucocorticoid exposure and identified marked gene expression changes in heme biosynthesis, utilization, and degradation pathways in late gestation. These changes in gene expression associated with alterations in DNA methylation and with a reduction in hepatic heme concentration. There were no persistent differences in gene expression, DNA methylation, or heme concentrations at 4 weeks of age, suggesting that these are transient effects. Our findings are consistent with glucocorticoid-induced accelerated maturation of the haematopoietic system and support the hypothesis that glucocorticoids can drive changes in gene expression in association with alterations in DNA methylation.


Assuntos
Metilação de DNA/efeitos dos fármacos , Desenvolvimento Fetal/efeitos dos fármacos , Glucocorticoides/farmacologia , Heme/biossíntese , Fígado/metabolismo , Exposição Materna , Animais , Citocromo P-450 CYP2J2 , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Dexametasona/farmacologia , Epigênese Genética , Feminino , Perfilação da Expressão Gênica , Fígado/efeitos dos fármacos , Masculino , Gravidez , Regiões Promotoras Genéticas , Ratos , Ratos Wistar , Transcriptoma
7.
Artigo em Inglês | MEDLINE | ID: mdl-25225576

RESUMO

BACKGROUND: Epigenetic reprogramming of fetal germ cells involves the genome-wide erasure and subsequent re-establishment of DNA methylation. Mouse studies indicate that DNA demethylation may be initiated at embryonic day (e) 8 and completed between e11.5 and e12.5. In the male germline, DNA remethylation begins around e15 and continues for the remainder of gestation whilst this process occurs postnatally in female germ cells. Although 5-methylcytosine (5mC) dynamics have been extensively characterised, a role for the more recently described DNA modifications (5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC)) remains unclear. Moreover, the extent to which the developmental dynamics of 5mC reprogramming is conserved across species remains largely undetermined. Here, we sought to describe this process during late gestation in the male rat. RESULTS: Using immunofluorescence, we demonstrate that 5mC is re-established between e18.5 and e21.5 in the rat, subsequent to loss of 5hmC, 5fC and 5caC, which are present in germ cells between e14.5 and e16.5. All of the evaluated DNA methyl forms were expressed in testicular somatic cells throughout late gestation. 5fC and 5caC can potentially be excised through Thymine DNA Glycosylase (TDG) and repaired by the base excision repair (BER) pathway, implicating 5mC oxidation in active DNA demethylation. In support of this potential mechanism, we show that TDG expression is coincident with the presence of 5hmC, 5fC and 5caC in male germ cell development. CONCLUSION: The developmental dependent changes in germ cell DNA methylation patterns suggest that they are linked with key stages of male rat germline progression.

8.
Biochem Soc Trans ; 41(3): 809-14, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23697942

RESUMO

Epigenetic reprogramming of germ cells involves the genome-wide erasure and subsequent re-establishment of DNA methylation, along with reprogramming of histone modification profiles and the eventual incorporation of histone variants. These linked processes appear to be key for the establishment of the correct epigenetic regulation of this cell lineage. Mouse studies indicate that DNA demethylation may be initiated at E (embryonic day) 8 with rapid and substantial erasure occurring between E11.5 and E12.5. This is accompanied by a reduction in H3K9 dimethylation and an increase in H3K27 trimethylation. DNA remethylation subsequently occurs in late gestation in male germ cells and postnatally in female germ cells. This reprogramming occurs throughout the genome, with the exception of specific sequences. The conservation of this process across species remains largely undetermined, and, with recent discoveries of new DNA modifications, there is still much to be explored.


Assuntos
Reprogramação Celular/genética , Epigênese Genética/fisiologia , Padrões de Herança/genética , Animais , Metilação de DNA/fisiologia , Epigênese Genética/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Genoma/genética , Genoma/fisiologia , Humanos , Masculino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA