Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Clin Pathol ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38749660

RESUMO

AIMS: Intrahepatic cholangiocarcinoma (iCCA) is a diagnosis of exclusion that can pose a challenge to the pathologist despite thorough clinical workup. Although several immunohistochemical markers have been proposed for iCCA, none of them reached clinical practice. We here assessed the combined usage of two promising diagnostic approaches, albumin in situ hybridisation (Alb-ISH) and C reactive protein (CRP) immunohistochemistry, for distinguishing iCCA from other adenocarcinoma primaries. METHODS: We conducted Alb-ISH and CRP immunohistochemistry in a large European iCCA cohort (n=153) and compared the results with a spectrum of other glandular adenocarcinomas of different origin (n=885). In addition, we correlated expression patterns with clinicopathological information and mutation data. RESULTS: Alb-ISH was highly specific for iCCA (specificity 98.8%) with almost complete negativity in perihilar CCA and only rare positives among other adenocarcinomas (sensitivity 69.5%). CRP identified the vast majority of iCCA cases (sensitivity 84.1%) at a lower specificity of 86.4%. Strikingly, the combination of CRP and Alb-ISH boosted the diagnostic sensitivity to 88.0% while retaining a considerable specificity of 86.1%. Alb-ISH significantly correlated with CRP expression, specific tumour morphologies and small or large duct iCCA subtypes. Neither Alb-ISH nor CRP was associated with iCCA patient survival. 16 of 17 recurrent mutations in either IDH1, IDH2 and FGFR2 affected Alb-ISH positive cases, while the only KRAS mutation corresponded to an Alb-ISH negative case. CONCLUSIONS: In conclusion, we propose a sequential diagnostic approach for iCCA, integrating CRP immunohistochemistry and Alb-ISH. This may improve the accuracy of CCA classification and pave the way towards a molecular-guided CCA classification.

2.
Cell Mol Life Sci ; 81(1): 115, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436764

RESUMO

INTRODUCTION: The Hippo pathway and its transcriptional effectors yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are targets for cancer therapy. It is important to determine if the activation of one factor compensates for the inhibition of the other. Moreover, it is unknown if YAP/TAZ-directed perturbation affects cell-cell communication of non-malignant liver cells. MATERIALS AND METHODS: To investigate liver-specific phenotypes caused by YAP and TAZ inactivation, we generated mice with hepatocyte (HC) and biliary epithelial cell (BEC)-specific deletions for both factors (YAPKO, TAZKO and double knock-out (DKO)). Immunohistochemistry, single-cell sequencing, and proteomics were used to analyze liver tissues and serum. RESULTS: The loss of BECs, liver fibrosis, and necrosis characterized livers from YAPKO and DKO mice. This phenotype was weakened in DKO tissues compared to specimens from YAPKO animals. After depletion of YAP in HCs and BECs, YAP expression was induced in non-parenchymal cells (NPCs) in a cholestasis-independent manner. YAP positivity was detected in subgroups of Kupffer cells (KCs) and endothelial cells (ECs). The secretion of pro-inflammatory chemokines and cytokines such as C-X-C motif chemokine ligand 11 (CXCL11), fms-related receptor tyrosine kinase 3 ligand (FLT3L), and soluble intercellular adhesion molecule-1 (ICAM1) was increased in the serum of YAPKO animals. YAP activation in NPCs could contribute to inflammation via TEA domain transcription factor (TEAD)-dependent transcriptional regulation of secreted factors. CONCLUSION: YAP inactivation in HCs and BECs causes liver damage, and concomitant TAZ deletion does not enhance but reduces this phenotype. Additionally, we present a new mechanism by which YAP contributes to cell-cell communication originating from NPCs.


Assuntos
Comunicação Celular , Fígado , Proteínas de Sinalização YAP , Animais , Camundongos , Comunicação Celular/genética , Células Endoteliais , Hepatócitos , Ligantes , Fígado/metabolismo , Proteínas de Sinalização YAP/genética , Proteínas de Sinalização YAP/metabolismo
3.
Biomed Pharmacother ; 173: 116450, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38503239

RESUMO

Cisplatin not only targets DNA but also RNA. However, it is largely unknown whether platinated RNA (Pt-RNA) causes apoptosis and thus contributes to the cytotoxic effects of cisplatin. Consequently, cellular RNA was isolated from HepG2 and LS180 cells, exposed to cisplatin, and the resulting Pt-RNA (20 ng Pt/µg RNA) was transfected into these cancer cell lines or used to treat an apoptosis reporter Caenorhabditis elegans (C. elegans) strain (MD701, expressing CED-1::GFP). Cellular and molecular effects of Pt-RNA were evaluated by luminogenic caspase 3/7 assays, PCR array analysis, and fluorescence microscopy-based quantification of apoptosis in C. elegans gonads. Assuming RNA cross-linking (pseudo double-stranded RNA), the contribution of the Toll-like receptor 3 (TLR3, a sensor of double-stranded RNA) to apoptosis induction in cancer cell lines was investigated by pharmacological TLR3 inhibition and overexpression. In contrast to controls, Pt-RNA significantly enhanced apoptosis in C. elegans (2-fold) and in the cancer cell lines (2-fold to 4-fold). TLR3 overexpression significantly enhanced the pro-apoptotic effects of Pt-RNA in HepG2 cells. TLR3 inhibition reduced the pro-apoptotic effects of Pt-RNA and cisplatin, but not of paclitaxel (off-target control). Gene expression analysis showed that Pt-RNA (but not RNA) significantly enhanced the mRNA levels of nuclear factor kappa B subunit 2 and interleukin-8 in HepG2 cells, suggesting that Pt-RNA is a damage-associated molecular pattern that additionally causes pro-inflammatory responses. Together, this data suggests that not only DNA but also cellular RNA is a functionally relevant target of cisplatin, leading to pro-apoptotic and immunogenic effects.


Assuntos
Cisplatino , Neoplasias , Animais , Cisplatino/farmacologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/farmacologia , Apoptose , Linhagem Celular Tumoral , DNA , Neoplasias/tratamento farmacológico , Neoplasias/genética
4.
Cancer Lett ; 584: 216637, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38242197

RESUMO

The transcriptional co-activators of the Hippo pathway, YAP and TAZ, are regulated by mechanotransduction, which depends on dynamic actin cytoskeleton remodeling. Here, we identified SEPTIN10 as a novel cytoskeletal protein, which is transcriptionally regulated by YAP/TAZ and whose overexpression correlates with poor survival and vascular invasion in hepatocellular carcinoma (HCC) patients. Functional characterization demonstrated that SEPTIN10 promotes YAP/TAZ-dependent cell viability, migration and invasion of liver cancer cells. Mechanistically, SEPTIN10 interacts with actin and microtubule filaments supporting actin stress fiber formation and intracellular tension through binding to CAPZA2 while concurrently inhibiting microtubule polymerization through the blockage of MAP4 function. This functional antagonism is important for cytoskeleton-dependent feedback activation of YAP/TAZ, as microtubule depolymerization induces actin stress fiber formation and subsequently YAP/TAZ activity. Importantly, the crosstalk between microfilaments and microtubules is mediated by SEPTIN10 as its loss abrogates actin stress fiber formation after microtubule disruption. Together, the YAP/TAZ target gene SEPTIN10 controls the dynamic interplay between actin and microtubule filaments, which feeds back on Hippo pathway activity in HCC cells and thus acts as molecular switch with impact on oncogenic signaling and cancer cell biology.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Mecanotransdução Celular , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Proteínas de Sinalização YAP , Humanos , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Transativadores/metabolismo , Fatores de Transcrição/metabolismo
5.
Cell Commun Signal ; 21(1): 162, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37381005

RESUMO

BACKGROUND: Adherens junctions (AJs) facilitate cell-cell contact and contribute to cellular communication as well as signaling under physiological and pathological conditions. Aberrant expression of AJ proteins is frequently observed in human cancers; however, how these factors contribute to tumorigenesis is poorly understood. In addition, for some factors such as α-catenin contradicting data has been described. In this study we aim to decipher how the AJ constituent α-catenin contributes to liver cancer formation. METHODS: TCGA data was used to detect transcript changes in 23 human tumor types. For the detection of proteins, liver cancer tissue microarrays were analyzed by immunohistochemistry. Liver cancer cell lines (HLF, Hep3B, HepG2) were used for viability, proliferation, and migration analyses after RNAinterference-mediated gene silencing. To investigate the tumor initiating potential, vectors coding for α-catenin and myristoylated AKT were injected in mice by hydrodynamic gene delivery. A BioID assay combined with mass spectrometry was performed to identify α-catenin binding partners. Results were confirmed by proximity ligation and co-immunoprecipitation assays. Binding of transcriptional regulators at gene promoters was investigated using chromatin-immunoprecipitation. RESULTS: α-catenin mRNA was significantly reduced in many human malignancies (e.g., colon adenocarcinoma). In contrast, elevated α-catenin expression in other cancer entities was associated with poor clinical outcome (e.g., for hepatocellular carcinoma; HCC). In HCC cells, α-catenin was detectable at the membrane as well as cytoplasm where it supported tumor cell proliferation and migration. In vivo, α-catenin facilitated moderate oncogenic properties in conjunction with AKT overexpression. Cytokinesis regulator centrosomal protein 55 (CEP55) was identified as a novel α-catenin-binding protein in the cytoplasm of HCC cells. The physical interaction between α-catenin and CEP55 was associated with CEP55 stabilization. CEP55 was highly expressed in human HCC tissues and its overexpression correlated with poor overall survival and cancer recurrence. Next to the α-catenin-dependent protein stabilization, CEP55 was transcriptionally induced by a complex consisting of TEA domain transcription factors (TEADs), forkhead box M1 (FoxM1), and yes-associated protein (YAP). Surprisingly, CEP55 did not affect HCC cell proliferation but significantly supported migration in conjunction with α-catenin. CONCLUSION: Migration-supporting CEP55 is induced by two independent mechanisms in HCC cells: stabilization through interaction with the AJ protein α-catenin and transcriptional activation via the FoxM1/TEAD/YAP complex.


Cell­cell contact in epithelial cells is important for cell polarity, cellular compartmentalisation, as well as tissue architecture during development, homeostasis, and regeneration of adult tissues in metazoans. In this context, adherens junctions (AJs) mechanically sense cell contact information with direct impact on cytoskeletal remodelling, the regulation of signalling pathways, and eventually cell biology. Indeed, the loss of cell­cell contact and cellular polarity are key features in human carcinogenesis and important pathological parameters for the identification of many epithelial tumors.We demonstrate in this study, that overexpression of the AJ constituent α­catenin is frequently observed in human hepatocellular carcinoma (HCC). α­catenin supports HCC cell proliferation and migration. Together with the oncogene AKT, α­catenin moderately facilitates tumor initiation in mouse livers. Using mass spectrometry, we identified several new α­catenin interaction partners in the cytosol of liver cancer cells, including the cytokinesis regulator centrosomal protein 55 (CEP55). CEP55 mediates pro-migratory effects and its overexpression in HCC cells is controlled by two molecular mechanisms: α­catenin-dependent protein stabilization and transcriptional induction by the TEA domain transcription factors (TEADs)/forkhead box M1 (FoxM1)/yes-associated protein (YAP) complex.In summary, we here describe a new mechanism how changes in cell­cell contact support liver cancer formation and progression. This study demonstrates that dysregulation of the AJ component α­catenin contributes to liver carcinogenesis via distinct molecular mechanisms. Video Abstract.


Assuntos
Adenocarcinoma , Carcinoma Hepatocelular , Proteínas de Ciclo Celular , Neoplasias do Colo , Neoplasias Hepáticas , Animais , Humanos , Camundongos , alfa Catenina , Linhagem Celular , Movimento Celular , Recidiva Local de Neoplasia , Proteínas Proto-Oncogênicas c-akt
6.
Pathol Res Pract ; 236: 154000, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35797854

RESUMO

Pulmonary capillary microthrombosis has been proposed as a major pathogenetic factor driving severe COVID-19. Autopsy studies reported endothelialitis but it is under debate if it is caused by SARS-CoV-2 infection of endothelial cells. In this study, RNA in situ hybridization was used to detect viral RNA and to identify the infected cell types in lung tissue of 40 patients with fatal COVID-19. SARS-CoV-2 Spike protein-coding RNA showed a steadily decreasing signal abundance over a period of three weeks. Besides the original virus strain the variants of concern Alpha (B.1.1.7), Delta (B.1.617.2), and Omicron (B.1.1.529) could also be detected by the assay. Viral RNA was mainly detected in alveolar macrophages and pulmonary epithelial cells, while only single virus-positive endothelial cells were observed even in cases with high viral load suggesting that viral infection of endothelial cells is not a key factor for the development of pulmonary capillary microthrombosis.


Assuntos
COVID-19 , Trombose , Células Endoteliais/metabolismo , Humanos , Pulmão/patologia , RNA Viral , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Trombose/patologia , Tropismo
7.
Cells ; 11(9)2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35563834

RESUMO

Genomic and epigenomic studies revealed dysregulation of long non-coding RNAs in many cancer entities, including liver cancer. We identified an epigenetic mechanism leading to upregulation of the long intergenic non-coding RNA 152 (LINC00152) expression in human hepatocellular carcinoma (HCC). Here, we aimed to characterize a potential competing endogenous RNA (ceRNA) network, in which LINC00152 exerts oncogenic functions by sponging miRNAs, thereby affecting their target gene expression. Database and gene expression data of human HCC were integrated to develop a potential LINC00152-driven ceRNA in silico. RNA immunoprecipitation and luciferase assay were used to identify miRNA binding to LINC00152 in human HCC cells. Functionally active players in the ceRNA network were analyzed using gene editing, siRNA or miRNA mimic transfection, and expression vectors in vitro. RNA expression in human HCC in vivo was validated by RNA in situ hybridization. Let-7c-5p, miR-23a-3p, miR-125a-5p, miR-125b-5p, miR-143a-3p, miR-193-3p, and miR-195-5p were detected as new components of the potential LINC00152 ceRNA network in human HCC. LINC00152 was confirmed to sponge miR143a-3p in human HCC cell lines, thereby limiting its binding to their respective target genes, like KLC2. KLC2 was identified as a central mediator promoting pro-tumorigenic effects of LINC00152 overexpression in HCC cells. Furthermore, co-expression of LINC00152 and KLC2 was observed in human HCC cohorts and high KLC2 expression was associated with shorter patient survival. Functional assays demonstrated that KLC2 promoted cell proliferation, clonogenicity and migration in vitro. The LINC00152-miR-143a-3p-KLC2 axis may represent a therapeutic target in human HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , RNA Longo não Codificante , Carcinogênese/patologia , Carcinoma Hepatocelular/patologia , Proliferação de Células/genética , Humanos , Neoplasias Hepáticas/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
8.
BMC Cancer ; 21(1): 1079, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615513

RESUMO

BACKGROUND: Activation of the oncogene yes-associated protein (YAP) is frequently detected in intrahepatic cholangiocarcinoma (iCCA); however, the expression pattern and the functional impact of its paralogue WW domain-containing transcription regulator 1 (WWTR1; synonym: TAZ) are not well described in different CCA subtypes. METHODS: Immunohistochemical analysis of YAP and TAZ in iCCA and extrahepatic CCA (eCCA) cohorts was performed. YAP/TAZ shuttling and their functional impact on CCA cell lines were investigated. Target genes expression after combined YAP/TAZ inhibition was analyzed. RESULTS: Immunohistochemical analysis of iCCA and eCCA revealed YAP or TAZ positivity in up to 49.2%; however, oncogene co-expression was less frequent (up to 23%). In contrast, both proteins were jointly detectable in most CCA cell lines and showed nuclear/cytoplasmic shuttling in a cell density-dependent manner. Next to the pro-proliferative function of YAP/TAZ, both transcriptional co-activators cooperated in the regulation of a gene signature that indicated the presence of chromosomal instability (CIN). A correlation between YAP and the CIN marker phospho-H2A histone family member X (pH2AX) was particularly observed in tissues from iCCA and distal CCA (dCCA). The presence of the CIN genes in about 25% of iCCA was statistically associated with worse prognosis. CONCLUSIONS: YAP and TAZ activation is not uncoupled from cell density in CCA cells and both factors cooperatively contribute to proliferation and expression of CIN-associated genes. The corresponding group of CCA patients is characterized by CIN and may benefit from YAP/TAZ-directed therapies.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias dos Ductos Biliares/genética , Colangiocarcinoma/genética , Instabilidade Cromossômica/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Ductos Biliares Extra-Hepáticos , Ductos Biliares Intra-Hepáticos , Contagem de Células , Linhagem Celular Tumoral , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Histonas/metabolismo , Humanos , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Prognóstico , Análise Serial de Tecidos , Fatores de Transcrição/antagonistas & inibidores , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Proteínas de Sinalização YAP
9.
Liver Int ; 41(12): 3011-3023, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34459091

RESUMO

BACKGROUND & AIM: The development of hepatocellular carcinoma (HCC) is associated with the formation of communication networks leading to the recruitment of disease-modifying macrophages. However, how oncogenes in tumour cells control paracrine communication is not fully understood. METHODS: Transgenic mice with liver-specific expression of the constitutively active yes-associated protein (YAPS127A ) or an orthotopic implantation model served as tumour models. FACS-sorted F4/80+ /CD11bdim /CD146- /retinoid- macrophages from healthy and tumour-bearing livers were used for transcriptomic profiling. Expression data of 242 human HCCs and a tissue microarray consisting of 91 HCCs and seven liver tissues were analyzed. RESULTS: Screening of primary tumour cells expressing YAPS127A identified CC chemokine ligand 2 (Ccl2) as a macrophage chemoattractant, whose expression was regulated in a YAP/TEA domain family member 4 (TEAD4)-dependent manner. Ccl2 expression was associated with a loss of Kupffer cells (KCs) and an increase in immature macrophages (Mɸimm ) in hepatocarcinogenesis. Recruited Mɸimm were characterized by a lack of functional polarization (M0 signature) and high expression of the Ccl2 receptors C-C motif chemokine receptor 2 (Ccr2), C-X3-C motif chemokine receptor 1 (Cx3cr1) and pro-angiogenic platelet-derived growth factors (Pdgfa/Pdgfb). Mɸimm formed cellular clusters in the perivascular space, which correlated with vascular morphometric changes indicative for angiogenesis. In human HCCs, the M0 signature served as an identifier for poor clinical outcome and CCL2 correlated with YAP expression and vascular network formation. CONCLUSIONS: In conclusion, YAP/TEAD4-regulated Ccl2 associates with perivascular recruitment of unpolarized Mɸimm and may contribute to a proangiogenic microenvironment in liver cancer.


Assuntos
Carcinoma Hepatocelular , Quimiocina CCL2 , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/patologia , Proteínas de Ciclo Celular , Quimiocina CCL2/metabolismo , Humanos , Células de Kupffer/metabolismo , Ligantes , Neoplasias Hepáticas/patologia , Macrófagos/metabolismo , Camundongos , Receptores CCR2/genética , Receptores CCR2/metabolismo , Fatores de Transcrição , Microambiente Tumoral , Remodelação Vascular , Proteínas de Sinalização YAP
10.
Cancer Res ; 80(24): 5502-5514, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33087321

RESUMO

The oncogene yes-associated protein (YAP) controls liver tumor initiation and progression via cell extrinsic functions by creating a tumor-supporting environment in conjunction with cell autonomous mechanisms. However, how YAP controls organization of the microenvironment and in particular the vascular niche, which contributes to liver disease and hepatocarcinogenesis, is poorly understood. To investigate heterotypic cell communication, we dissected murine and human liver endothelial cell (EC) populations into liver sinusoidal endothelial cells (LSEC) and continuous endothelial cells (CEC) through histomorphological and molecular characterization. In YAPS127A-induced tumorigenesis, a gradual replacement of LSECs by CECs was associated with dynamic changes in the expression of genes involved in paracrine communication. The formation of new communication hubs connecting CECs and LSECs included the hepatocyte growth factor (Hgf)/c-Met signaling pathway. In hepatocytes and tumor cells, YAP/TEA domain transcription factor 4 (TEAD4)-dependent transcriptional induction of osteopontin (Opn) stimulated c-Met expression in EC with CEC phenotype, which sensitized these cells to the promigratory effects of LSEC-derived Hgf. In human hepatocellular carcinoma, the presence of a migration-associated tip-cell signature correlated with poor clinical outcome and the loss of LSEC marker gene expression. The occurrence of c-MET-expressing CECs in human liver cancer samples was confirmed at the single-cell level. In summary, YAP-dependent changes of the liver vascular niche comprise the formation of heterologous communication hubs in which tumor cell-derived factors modify the cross-talk between LSECs and CECs via the HGF/c-MET axis. SIGNIFICANCE: YAP-dependent changes of the liver vascular niche comprise the formation of heterologous communication hubs in which tumor cell-derived factors modify the cross-talk between EC subpopulations. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/24/5502/F1.large.jpg.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinogênese/metabolismo , Carcinoma Hepatocelular/metabolismo , Comunicação Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células Endoteliais/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Carcinoma Hepatocelular/patologia , Proteínas de Ciclo Celular/genética , Células Hep G2 , Humanos , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas de Sinalização YAP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA