Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37645715

RESUMO

Arteries and arterioles exhibit myogenic tone, a partially constricted state that allows further constriction or dilation in response to moment-to-moment fluctuations in blood pressure. The vascular endothelium that lines the internal surface of all blood vessels controls a wide variety of essential functions, including the contractility of the adjacent smooth muscle cells by providing a tonic vasodilatory influence. Studies conducted on large (pial) arteries on the surface of the brain have shown that estrogen lowers myogenic tone in female mice by enhancing nitric oxide (NO) release from the endothelium, however, whether this difference extends to the intracerebral microcirculation remains ambiguous. The existing incomplete picture of sex differences in cerebrovascular physiology combined with a deficiency in treatments that fully restore cognitive function after cerebrovascular accidents places heavy emphasis on the necessity to investigate myogenic tone regulation in the microcirculation from both male and female mice. We hypothesized that sex-linked hormone regulation of myogenic tone extends its influence on the microcirculation level, and sought to characterize it in isolated arterioles from the hippocampus, a major cognitive brain area. Using diameter measurements both in vivo (acute cranial window vascular diameter) and ex vivo (pressure myography experiments), we measured lower myogenic tone responses in hippocampal arterioles from female than male mice. By using a combined surgical and pharmacological approach, we found myogenic tone in ovariectomized (OVX) female mice matches that of males, as well as in endothelium-denuded arterioles. Interestingly, eNOS inhibition induced a larger constriction in female arterioles but only partially abolished the difference in tone. We identified that the remnant difference was mediated by a higher activity and expression of the small-conductance Ca 2+ -sensitive K + (SK) channels. Collectively, these data indicate that eNOS and SK channels exert greater vasodilatory influence over myogenic tone in female mice at physiological pressures.

2.
Front Aging Neurosci ; 13: 695965, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34483880

RESUMO

Prostaglandin E2 (PGE2) has been widely proposed to mediate neurovascular coupling by dilating brain parenchymal arterioles through activation of prostanoid EP4 receptors. However, our previous report that direct application of PGE2 induces an EP1-mediated constriction strongly argues against its direct action on arterioles during neurovascular coupling, the mechanisms sustaining functional hyperemia. Recent advances have highlighted the role of capillaries in sensing neuronal activity and propagating vasodilatory signals to the upstream penetrating parenchymal arteriole. Here, we examined the effect of capillary stimulation with PGE2 on upstream arteriolar diameter using an ex vivo capillary-parenchymal arteriole preparation and in vivo cerebral blood flow measurements with two-photon laser-scanning microscopy. We found that PGE2 caused upstream arteriolar dilation when applied onto capillaries with an EC50 of 70 nM. The response was inhibited by EP1 receptor antagonist and was greatly reduced, but not abolished, by blocking the strong inward-rectifier K+ channel. We further observed a blunted dilatory response to capillary stimulation with PGE2 in a genetic mouse model of cerebral small vessel disease with impaired functional hyperemia. This evidence casts previous findings in a different light, indicating that capillaries are the locus of PGE2 action to induce upstream arteriolar dilation in the control of brain blood flow, thereby providing a paradigm-shifting view that nonetheless remains coherent with the broad contours of a substantial body of existing literature.

3.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33875602

RESUMO

Cerebral small vessel diseases (SVDs) are a central link between stroke and dementia-two comorbidities without specific treatments. Despite the emerging consensus that SVDs are initiated in the endothelium, the early mechanisms remain largely unknown. Deficits in on-demand delivery of blood to active brain regions (functional hyperemia) are early manifestations of the underlying pathogenesis. The capillary endothelial cell strong inward-rectifier K+ channel Kir2.1, which senses neuronal activity and initiates a propagating electrical signal that dilates upstream arterioles, is a cornerstone of functional hyperemia. Here, using a genetic SVD mouse model, we show that impaired functional hyperemia is caused by diminished Kir2.1 channel activity. We link Kir2.1 deactivation to depletion of phosphatidylinositol 4,5-bisphosphate (PIP2), a membrane phospholipid essential for Kir2.1 activity. Systemic injection of soluble PIP2 rapidly restored functional hyperemia in SVD mice, suggesting a possible strategy for rescuing functional hyperemia in brain disorders in which blood flow is disturbed.


Assuntos
Doenças de Pequenos Vasos Cerebrais/etiologia , Circulação Cerebrovascular , Hiperemia/etiologia , Fosfatidilinositol 4,5-Difosfato/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Animais , Doenças de Pequenos Vasos Cerebrais/metabolismo , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Hiperemia/metabolismo , Masculino , Camundongos Transgênicos
4.
Mech Ageing Dev ; 192: 111389, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33127441

RESUMO

Vascular cognitive impairment, the second most common cause of dementia, profoundly affects hippocampal-dependent functions. However, while the growing literature covers complex neuronal interactions, little is known about the sustaining hippocampal microcirculation. Here we examined vasoconstriction to physiological pressures of hippocampal arterioles, a fundamental feature of small arteries, in a genetic mouse model of CADASIL, an archetypal cerebral small vessel disease. Using diameter and membrane potential recordings on isolated arterioles, we observed both blunted pressure-induced vasoconstriction and smooth muscle cell depolarization in CADASIL. This impairment was abolished in the presence of voltage-gated potassium (KV1) channel blocker 4-aminopyridine, or by application of heparin-binding EGF-like growth factor (HB-EGF), which promotes KV1 channel down-regulations. Interestingly, we observed that HB-EGF induced a depolarization of the myocyte plasma membrane within the arteriolar wall in CADASIL, but not wild-type, arterioles. Collectively, our results indicate that hippocampal arterioles in CADASIL mice display a blunted contractile response to luminal pressure, similar to the defect we previously reported in cortical arterioles and pial arteries, that is rescued by HB-EGF. Hippocampal vascular dysfunction in CADASIL could then contribute to the decreased vascular reserve associated with decreased cognitive performance, and its correction may provide a therapeutic option for treating vascular cognitive impairment.


Assuntos
Arteríolas , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/metabolismo , Hipocampo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/antagonistas & inibidores , Aminopiridinas/farmacologia , Animais , Arteríolas/metabolismo , Arteríolas/fisiopatologia , Doenças de Pequenos Vasos Cerebrais/metabolismo , Doenças de Pequenos Vasos Cerebrais/fisiopatologia , Demência Vascular/metabolismo , Demência Vascular/fisiopatologia , Hipocampo/irrigação sanguínea , Hipocampo/metabolismo , Potenciais da Membrana/fisiologia , Moduladores de Transporte de Membrana/farmacologia , Camundongos , Microcirculação , Modelos Genéticos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Vasoconstrição/efeitos dos fármacos , Vasoconstrição/fisiologia
5.
J Vis Exp ; (154)2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31904015

RESUMO

From subtle behavioral alterations to late-stage dementia, vascular cognitive impairment typically develops following cerebral ischemia. Stroke and cardiac arrest are remarkably sexually dimorphic diseases, and both induce cerebral ischemia. However, progress in understanding the vascular cognitive impairment, and then developing sex-specific treatments, has been partly limited by challenges in investigating the brain microcirculation from mouse models in functional studies. Here, we present an approach to examine the capillary-to-arteriole signaling in an ex vivo hippocampal capillary-parenchymal arteriole (HiCaPA) preparation from mouse brain. We describe how to isolate, cannulate, and pressurize the microcirculation to measure arteriolar diameter in response to capillary stimulation. We show which appropriate functional controls can be used to validate the HiCaPA preparation integrity and display typical results, including testing potassium as a neurovascular coupling agent and the effect of the recently characterized inhibitor of the Kir2 inward rectifying potassium channel family, ML133. Further, we compare the responses in preparations obtained from male and female mice. While these data reflect functional investigations, our approach can also be used in molecular biology, immunochemistry, and electrophysiology studies.


Assuntos
Arteríolas/fisiologia , Capilares/fisiologia , Hipocampo/irrigação sanguínea , Acoplamento Neurovascular/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microcirculação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA