Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(47): eadj5200, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38000034

RESUMO

Field-induced superconductivity is a rare phenomenon where an applied magnetic field enhances or induces superconductivity. Here, we use applied stress as a control switch between a field-tunable superconducting state and a robust non-field-tunable state. This marks the first demonstration of a strain-tunable superconducting spin valve with infinite magnetoresistance. We combine tunable uniaxial stress and applied magnetic field on the ferromagnetic superconductor Eu(Fe0.88Co0.12)2As2 to shift the field-induced zero-resistance temperature between 4 K and a record-high value of 10 K. We use x-ray diffraction and spectroscopy measurements under stress and field to reveal that strain tuning of the nematic order and field tuning of the ferromagnetism act as independent control parameters of the superconductivity. Combining comprehensive measurements with DFT calculations, we propose that field-induced superconductivity arises from a novel mechanism, namely, the uniquely dominant effect of the Eu dipolar field when the exchange field splitting is nearly zero.

2.
Nature ; 609(7927): 490-495, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36104552

RESUMO

A hallmark of strongly correlated quantum materials is the rich phase diagram resulting from competing and intertwined phases with nearly degenerate ground-state energies1,2. A well-known example is the copper oxides, in which a charge density wave (CDW) is ordered well above and strongly coupled to the magnetic order to form spin-charge-separated stripes that compete with superconductivity1,2. Recently, such rich phase diagrams have also been shown in correlated topological materials. In 2D kagome lattice metals consisting of corner-sharing triangles, the geometry of the lattice can produce flat bands with localized electrons3,4, non-trivial topology5-7, chiral magnetic order8,9, superconductivity and CDW order10-15. Although CDW has been found in weakly electron-correlated non-magnetic AV3Sb5 (A = K, Rb, Cs)10-15, it has not yet been observed in correlated magnetic-ordered kagome lattice metals4,16-21. Here we report the discovery of CDW in the antiferromagnetic (AFM) ordered phase of kagome lattice FeGe (refs. 16-19). The CDW in FeGe occurs at wavevectors identical to that of AV3Sb5 (refs. 10-15), enhances the AFM ordered moment and induces an emergent anomalous Hall effect22,23. Our findings suggest that CDW in FeGe arises from the combination of electron-correlations-driven AFM order and van Hove singularities (vHSs)-driven instability possibly associated with a chiral flux phase24-28, in stark contrast to strongly correlated copper oxides1,2 and nickelates29-31, in which the CDW precedes or accompanies the magnetic order.

3.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34503998

RESUMO

The elastocaloric effect (ECE) relates changes in entropy to changes in strain experienced by a material. As such, ECE measurements can provide valuable information about the entropy landscape proximate to strain-tuned phase transitions. For ordered states that break only point symmetries, bilinear coupling of the order parameter with strain implies that the ECE can also provide a window on fluctuations above the critical temperature and hence, in principle, can also provide a thermodynamic measure of the associated susceptibility. To demonstrate this, we use the ECE to sensitively reveal the presence of nematic fluctuations in the archetypal Fe-based superconductor Ba([Formula: see text])2[Formula: see text] By performing these measurements simultaneously with elastoresistivity in a multimodal fashion, we are able to make a direct and unambiguous comparison of these closely related thermodynamic and transport properties, both of which are sensitive to nematic fluctuations. As a result, we have uncovered an unanticipated doping dependence of the nemato-elastic coupling and of the magnitude of the scattering of low-energy quasi-particles by nematic fluctuations-while the former weakens, the latter increases dramatically with increasing doping.

4.
Proc Natl Acad Sci U S A ; 116(15): 7232-7237, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30898884

RESUMO

Ferroquadrupole order associated with local [Formula: see text] atomic orbitals of rare-earth ions is a realization of electronic nematic order. However, there are relatively few examples of intermetallic materials which exhibit continuous ferroquadrupole phase transitions, motivating the search for additional materials that fall into this category. Furthermore, it is not clear a priori whether experimental approaches based on transport measurements which have been successfully used to probe the nematic susceptibility in materials such as the Fe-based superconductors will be as effective in the case of [Formula: see text] intermetallic materials, for which the important electronic degrees of freedom are local rather than itinerant and are consequently less strongly coupled to the charge-carrying quasiparticles near the Fermi energy. In the present work, we demonstrate that the intermetallic compound [Formula: see text] exhibits a tetragonal-to-orthorhombic phase transition consistent with ferroquadrupole order of the Yb ions and go on to show that elastoresistivity measurements can indeed provide a clear window on the diverging nematic susceptibility in this system. This material provides an arena in which to study the causes and consequences of electronic nematicity.


Assuntos
Germânio/química , Rubídio/química , Supercondutividade , Itérbio/química
5.
Proc Natl Acad Sci U S A ; 114(51): 13430-13434, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29208710

RESUMO

The paradigmatic example of a continuous quantum phase transition is the transverse field Ising ferromagnet. In contrast to classical critical systems, whose properties depend only on symmetry and the dimension of space, the nature of a quantum phase transition also depends on the dynamics. In the transverse field Ising model, the order parameter is not conserved, and increasing the transverse field enhances quantum fluctuations until they become strong enough to restore the symmetry of the ground state. Ising pseudospins can represent the order parameter of any system with a twofold degenerate broken-symmetry phase, including electronic nematic order associated with spontaneous point-group symmetry breaking. Here, we show for the representative example of orbital-nematic ordering of a non-Kramers doublet that an orthogonal strain or a perpendicular magnetic field plays the role of the transverse field, thereby providing a practical route for tuning appropriate materials to a quantum critical point. While the transverse fields are conjugate to seemingly unrelated order parameters, their nontrivial commutation relations with the nematic order parameter, which can be represented by a Berry-phase term in an effective field theory, intrinsically intertwine the different order parameters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA