RESUMO
Solubility of the growing oligonucleotide-soluble support constructs in the liquid phase oligonucleotide synthesis (LPOS) is a critical parameter, which affects coupling efficiency, purity, and recovery of the growing oligonucleotides during the chain elongation. In the present study, oligonucleotides have been assembled on a 4-oxoheptanedioic acid (OHDA) linker-derived tetrapodal soluble support using 5'-O-(2-methoxyprop-2-yl)-protected 2'-deoxyribonucleotide phosphoroamidite building blocks with different nucleobase protecting groups [isobutyryl (Gua), 1-butylpyrrolidin-2-ylidene (Gua, Cyt), 2,4-dimethylbenzoyl (Ade, Cyt), and Bz (Thy)]. The solubility of the oligonucleotide-soluble support constructs (molecular mass varying between 3 and 10 kDa) as models of protected tetra-, octa-, dodeca-, hexadeca-, and eicosa-nucleotides was measured in different solvent systems and in potential antisolvents. By tuning the nucleobase protecting group scheme, the solubility can be improved in aprotic organic solvent systems, while the recovery of the constructs in the precipitation, used for the isolation and purification of the growing oligonucleotide intermediates in a protic antisolvent (2-propanol), remained near quantitative. The precipitation-based yield of the protected tetrapodal oligonucleotides varied from a quantitative to 90% yield. Overall yield (for di-: 95%, tri-: 79-96%, tetra-: 82-88%, and pentanucleotides: 68-75%) and purity of the LPOS were evaluated by RP HPLC and MS-spectroscopy of the released oligonucleotide aliquots. In addition, the orthogonality of the OHDA linker was applied to release authentic protected nucleotides from the soluble supports.
Assuntos
Oligonucleotídeos , Solubilidade , Oligonucleotídeos/química , Oligonucleotídeos/síntese química , Estrutura Molecular , Solventes/químicaRESUMO
Formycin A (FOR) and pyrazofurin A (PYR) are nucleoside analogs with antiviral and antitumor properties. They are known to interfere with nucleic acid metabolism, but their direct effect on transcription is less understood. We explored how RNA polymerases (RNAPs) from bacteria, mitochondria, and viruses utilize FOR, PYR, and oxidized purine nucleotides. All tested polymerases incorporated FOR in place of adenine and PYR in place of uridine. FOR also exhibited surprising dual-coding behavior, functioning as a cytosine substitute, particularly for viral RNAP. In contrast, 8-oxoadenine and 8-oxoguanine were incorporated in place of uridine in addition to their canonical Watson-Crick codings. Our data suggest that the interconversion of canonical anti and alternative syn conformers underlies dual-coding abilities of FOR and oxidized purines. Structurally distinct RNAPs displayed varying abilities to utilize syn conformers during transcription. By examining base pairings that led to substrate incorporation and the entire spectrum of geometrically compatible pairings, we have gained new insights into the nucleobase selection processes employed by structurally diverse RNAPs. These insights may pave the way for advancements in antiviral therapies.
Assuntos
RNA Polimerases Dirigidas por DNA , RNA Polimerases Dirigidas por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/química , Transcrição Gênica , Pareamento de Bases , Especificidade por SubstratoRESUMO
5'-O-(2-Methoxyisopropyl) (MIP)-protected 2'-deoxynucleosides as chiral P(V)-building blocks, based on the limonene-derived oxathiaphospholane sulfide, were synthesized and used for the assembly of di-, tri-, and tetranucleotide phosphorothioates on a tetrapodal pentaerythritol-derived soluble support. The synthesis cycle consisted of two reactions and two precipitations: (1) the coupling under basic conditions, followed by neutralization and precipitation and (2) an acid catalyzed 5'-O-deacetalization, followed by neutralization and precipitation. The simple P(V) chemistry together with the facile 5'-O-MIP deprotection proved efficient in the liquid phase oligonucleotide synthesis (LPOS). Ammonolysis released nearly homogeneous Rp or Sp phosphorothioate diastereomers in ca. 80% yield/synthesis cycle.
Assuntos
Oligonucleotídeos Fosforotioatos , Oligonucleotídeos Fosforotioatos/química , EstereoisomerismoRESUMO
Pseudouridimycin is a microbial C-nucleoside natural product that specifically inhibits bacterial RNA polymerases by binding to the active site and competing with uridine triphosphate for the nucleoside triphosphate (NTP) addition site. Pseudouridimycin consists of 5'-aminopseudouridine and formamidinylated, N-hydroxylated Gly-Gln dipeptide moieties to allow Watson-Crick base pairing and to mimic protein-ligand interactions of the triphosphates of NTP, respectively. The metabolic pathway of pseudouridimycin has been studied in Streptomyces species, but no biosynthetic steps have been characterized biochemically. Here, we show that the flavin-dependent oxidase SapB functions as a gate-keeper enzyme selecting pseudouridine (KM = 34 µM) over uridine (KM = 901 µM) in the formation of pseudouridine aldehyde. The pyridoxal phosphate (PLP)-dependent SapH catalyzes transamination, resulting in 5'-aminopseudouridine with a preference for arginine, methionine, or phenylalanine as cosubstrates as amino group donors. The binary structure of SapH in complex with pyridoxamine-5'-phosphate and site-directed mutagenesis identified Lys289 and Trp32 as key residues for catalysis and substrate binding, respectively. The related C-nucleoside oxazinomycin was accepted as a substrate by SapB with moderate affinity (KM = 181 µM) and was further converted by SapH, which opens possibilities for metabolic engineering to generate hybrid C-nucleoside pseudouridimycin analogues in Streptomyces.
Assuntos
Nucleosídeos , Pseudouridina , Vias Biossintéticas , RNA Polimerases Dirigidas por DNA/metabolismo , Nucleosídeos/metabolismo , Pseudouridina/biossíntese , Pseudouridina/metabolismo , Fosfato de Piridoxal/química , Streptomyces/química , Streptomyces/metabolismoRESUMO
Showdomycin produced by Streptomyces showdoensis ATCC 15227 is a C-nucleoside microbial natural product with antimicrobial and cytotoxic properties. The unique feature of showdomycin in comparison to other nucleosides is its maleimide base moiety, which has the distinct ability to alkylate nucleophilic thiol groups by a Michael addition reaction. In order to understand structure-activity relationships of showdomycin, we synthesized a series of derivatives with modifications in the maleimide ring at the site of alkylation to moderate its reactivity. The showdomycin congeners were designed to retain the planarity of the base ring system to allow Watson-Crick base pairing and preserve the nucleosidic character of the compounds. Consequently, we synthesized triphosphates of showdomycin derivatives and tested their activity against RNA polymerases. Bromo, methylthio, and ethylthio derivatives of showdomycin were incorporated into RNA by bacterial and mitochondrial RNA polymerases and somewhat less efficiently by the eukaryotic RNA polymerase II. Showdomycin derivatives acted as uridine mimics and delayed further extension of the RNA chain by multi-subunit, but not mitochondrial RNA polymerases. Bioactivity profiling indicated that the mechanism of action of ethylthioshowdomycin was altered, with approximately 4-fold reduction in both cytotoxicity against human embryonic kidney cells and antibacterial activity against Escherichia coli. In addition, the ethylthio derivative was not inactivated by medium components or influenced by addition of uridine in contrast to showdomycin. The results explain how both the maleimide ring and the nucleoside nature contribute to the bioactivity of showdomycin and demonstrates for the first time that the two activities can be separated.
Assuntos
Nucleosídeos , Showdomicina , Antibacterianos/farmacologia , Humanos , Maleimidas/farmacologia , RNA , Showdomicina/farmacologia , Relação Estrutura-Atividade , UridinaRESUMO
Yersinia phage YerA41 is morphologically similar to jumbo bacteriophages. The isolated genomic material of YerA41 could not be digested by restriction enzymes, and used as a template by conventional DNA polymerases. Nucleoside analysis of the YerA41 genomic material, carried out to find out whether this was due to modified nucleotides, revealed the presence of a ca 1 kDa substitution of thymidine with apparent oligosaccharide character. We identified and purified the phage DNA polymerase (DNAP) that could replicate the YerA41 genomic DNA even without added primers. Cryo-electron microscopy (EM) was used to characterize structural details of the phage particle. The storage capacity of the 131 nm diameter head was calculated to accommodate a significantly longer genome than that of the 145 577 bp genomic DNA of YerA41 determined here. Indeed, cryo-EM revealed, in contrast to the 25 Å in other phages, spacings of 33-36 Å between shells of the genomic material inside YerA41 heads suggesting that the heavily substituted thymidine increases significantly the spacing of the DNA packaged inside the capsid. In conclusion, YerA41 appears to be an unconventional phage that packages thymidine-modified genomic DNA into its capsids along with its own DNAP that has the ability to replicate the genome.
Assuntos
Bacteriófagos , Bacteriófagos/química , Bacteriófagos/genética , Capsídeo , Microscopia Crioeletrônica , DNA Viral/genética , DNA Polimerase Dirigida por DNA/genética , Genoma Viral/genética , TimidinaRESUMO
The trafficking chaperone PDE6D (also referred to as PDEδ) has been nominated as a surrogate target for K-Ras4B (hereafter K-Ras). Arl2-assisted unloading of K-Ras from PDE6D in the perinuclear area is significant for correct K-Ras localization and therefore activity. However, the unloading mechanism also leads to the undesired ejection of PDE6D inhibitors. To counteract ejection, others have recently optimized inhibitors for picomolar affinities; however, cell penetration generally seems to remain an issue. To increase resilience against ejection, we engineered a "chemical spring" into prenyl-binding pocket inhibitors of PDE6D. Furthermore, cell penetration was improved by attaching a cell-penetration group, allowing us to arrive at micromolar in cellulo potencies in the first generation. Our model compounds, Deltaflexin-1 and -2, selectively disrupt K-Ras, but not H-Ras membrane organization. This selectivity profile is reflected in the antiproliferative activity on colorectal and breast cancer cells, as well as the ability to block stemness traits of lung and breast cancer cells. While our current model compounds still have a low in vitro potency, we expect that our modular and simple inhibitor redesign could significantly advance the development of pharmacologically more potent compounds against PDE6D and related targets, such as UNC119 in the future.
RESUMO
Oxazinomycin is a C-nucleoside antibiotic that is produced by Streptomyces hygroscopicus and closely resembles uridine. Here, we show that the oxazinomycin triphosphate is a good substrate for bacterial and eukaryotic RNA polymerases (RNAPs) and that a single incorporated oxazinomycin is rapidly extended by the next nucleotide. However, the incorporation of several successive oxazinomycins or a single oxazinomycin in a certain sequence context arrested a fraction of the transcribing RNAP. The addition of Gre RNA cleavage factors eliminated the transcriptional arrest at a single oxazinomycin and shortened the nascent RNAs arrested at the polythymidine sequences suggesting that the transcriptional arrest was caused by backtracking of RNAP along the DNA template. We further demonstrate that the ubiquitous C-nucleoside pseudouridine is also a good substrate for RNA polymerases in a triphosphorylated form but does not inhibit transcription of the polythymidine sequences. Our results collectively suggest that oxazinomycin functions as a Trojan horse substrate and its inhibitory effect is attributable to the oxygen atom in the position corresponding to carbon five of the uracil ring.
Assuntos
RNA Polimerases Dirigidas por DNA/química , RNA/química , Transcrição Gênica/efeitos dos fármacos , Uridina/análogos & derivados , RNA Polimerases Dirigidas por DNA/genética , Escherichia coli/genética , Oxigênio/química , Pseudomonas/química , RNA/genética , Clivagem do RNA/efeitos dos fármacos , Streptomyces/química , Especificidade por Substrato , Timidina/química , Timidina/genética , Transcrição Gênica/genética , Fatores de Elongação da Transcrição/genética , Uracila/química , Uridina/síntese química , Uridina/química , Uridina/farmacologiaRESUMO
Pseudouridimycin (PUM), a selective inhibitor of bacterial RNA polymerase has been previously detected in microbial-extracts of two strains of Streptomyces species (strain ID38640 and ID38673). Here, we isolated PUM and its deoxygenated analogue desoxy-pseudouridimycin (dPUM) from Streptomyces albus DSM 40763, previously reported to produce the metabolite strepturidin (STU). The isolated compounds were characterized by HRMS and spectroscopic techniques and they selectively inhibited transcription by bacterial RNA polymerase as previously reported for PUM. In contrast, STU could not be detected in the cultures of S. albus DSM 40763. As the reported characteristics reported for STU are almost identical with that of PUM, the existence of STU was questioned. We further sequenced the genome of S. albus DSM 40763 and identified a gene cluster that contains orthologs of all PUM biosynthesis enzymes but lacks the enzymes that would conceivably allow biosynthesis of STU as an additional product.
Assuntos
Anti-Infecciosos/química , Nucleosídeos/análogos & derivados , Nucleosídeos/química , Streptomyces/química , Anti-Infecciosos/isolamento & purificação , Anti-Infecciosos/farmacologia , Genes Bacterianos , Família Multigênica , Nucleosídeos/isolamento & purificação , Nucleosídeos/farmacologia , Streptomyces/genéticaRESUMO
Nucleoside antibiotics are a large class of pharmaceutically relevant chemical entities, which exhibit a broad spectrum of biological activities. Most nucleosides belong to the canonical N-nucleoside family, where the heterocyclic unit is connected to the carbohydrate through a carbon-nitrogen bond. However, atypical C-nucleosides were isolated from Streptomyces bacteria over 50 years ago, but the molecular basis for formation of these metabolites has been unknown. Here, we have sequenced the genome of S. showdoensis ATCC 15227 and identified the gene cluster responsible for showdomycin production. Key to the detection was the presence of sdmA, encoding an enzyme of the pseudouridine monophosphate glycosidase family, which could catalyze formation of the C-glycosidic bond. Sequence analysis revealed an unusual combination of biosynthetic genes, while inactivation and subsequent complementation of sdmA confirmed the involvement of the locus in showdomycin formation. The study provides the first steps toward generation of novel C-nucleosides by pathway engineering.