Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3775, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710701

RESUMO

SAMHD1 regulates cellular nucleotide homeostasis, controlling dNTP levels by catalysing their hydrolysis into 2'-deoxynucleosides and triphosphate. In differentiated CD4+ macrophage and resting T-cells SAMHD1 activity results in the inhibition of HIV-1 infection through a dNTP blockade. In cancer, SAMHD1 desensitizes cells to nucleoside-analogue chemotherapies. Here we employ time-resolved cryogenic-EM imaging and single-particle analysis to visualise assembly, allostery and catalysis by this multi-subunit enzyme. Our observations reveal how dynamic conformational changes in the SAMHD1 quaternary structure drive the catalytic cycle. We capture five states at high-resolution in a live catalytic reaction, revealing how allosteric activators support assembly of a stable SAMHD1 tetrameric core and how catalysis is driven by the opening and closing of active sites through pairwise coupling of active sites and order-disorder transitions in regulatory domains. This direct visualisation of enzyme catalysis dynamics within an allostery-stabilised platform sets a precedent for mechanistic studies into the regulation of multi-subunit enzymes.


Assuntos
Domínio Catalítico , Microscopia Crioeletrônica , Proteína 1 com Domínio SAM e Domínio HD , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Proteína 1 com Domínio SAM e Domínio HD/química , Proteína 1 com Domínio SAM e Domínio HD/genética , Regulação Alostérica , Humanos , Estrutura Quaternária de Proteína , Catálise , Biocatálise , HIV-1/metabolismo , Modelos Moleculares
2.
IUCrJ ; 11(Pt 2): 140-151, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38358351

RESUMO

In January 2020, a workshop was held at EMBL-EBI (Hinxton, UK) to discuss data requirements for the deposition and validation of cryoEM structures, with a focus on single-particle analysis. The meeting was attended by 47 experts in data processing, model building and refinement, validation, and archiving of such structures. This report describes the workshop's motivation and history, the topics discussed, and the resulting consensus recommendations. Some challenges for future methods-development efforts in this area are also highlighted, as is the implementation to date of some of the recommendations.


Assuntos
Curadoria de Dados , Microscopia Crioeletrônica/métodos
3.
mBio ; 15(2): e0313423, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38171004

RESUMO

Vaccinia virus assembly in the cytoplasm of infected cells involves the formation of a biconcave viral core inside the maturing viral particle. The boundary of the core is defined by a pseudohexagonal palisade layer, composed of trimers projecting from an inner wall. To understand the assembly of this complex core architecture, we obtained a subnanometer structure of the palisade trimer by cryo-electron tomography and subtomogram averaging of purified intact virions. Using AlphaFold2 structure predictions, we determined that the palisade is formed from trimers of the proteolytically processed form of the viral protein A10. In addition, we found that each A10 protomer associates with an α-helix (residues 24-66) of A4. Cellular localization assays outside the context of infection demonstrate that the A4 N-terminus is necessary and sufficient to interact with A10. The interaction between A4 and A10 provides insights into how the palisade layer might become tightly associated with the viral membrane during virion maturation. Reconstruction of the palisade layer reveals that, despite local hexagonal ordering, the A10/A4 trimers are widely spaced, suggesting that additional components organize the lattice. This spacing would, however, allow the adoption of the characteristic biconcave shape of the viral core. Finally, we also found that the palisade incorporates multiple copies of a hexameric portal structure. We suggest that these portals are formed by E6, a viral protein that is essential for virion assembly and required to release viral mRNA from the core early in infection.IMPORTANCEPoxviruses such as variola virus (smallpox) and monkeypox cause diseases in humans. Other poxviruses, including vaccinia and modified vaccinia Ankara, are used as vaccine vectors. Given their importance, a greater structural understanding of poxvirus virions is needed. We now performed cryo-electron tomography of purified intact vaccinia virions to study the structure of the palisade, a protein lattice that defines the viral core boundary. We identified the main viral proteins that form the palisade and their interaction surfaces and provided new insights into the organization of the viral core.


Assuntos
Benzenoacetamidas , Piperidonas , Vaccinia virus , Vacínia , Humanos , Vaccinia virus/química , Montagem de Vírus , Vírion/genética , Proteínas Virais/metabolismo
4.
ArXiv ; 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38076521

RESUMO

In January 2020, a workshop was held at EMBL-EBI (Hinxton, UK) to discuss data requirements for deposition and validation of cryoEM structures, with a focus on single-particle analysis. The meeting was attended by 47 experts in data processing, model building and refinement, validation, and archiving of such structures. This report describes the workshop's motivation and history, the topics discussed, and consensus recommendations resulting from the workshop. Some challenges for future methods-development efforts in this area are also highlighted, as is the implementation to date of some of the recommendations.

5.
Nat Struct Mol Biol ; 30(7): 1033-1039, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37095205

RESUMO

Immunoglobulin Fc receptors are cell surface transmembrane proteins that bind to the Fc constant region of antibodies and play critical roles in regulating immune responses by activation of immune cells, clearance of immune complexes and regulation of antibody production. FcµR is the immunoglobulin M (IgM) antibody isotype-specific Fc receptor involved in the survival and activation of B cells. Here we reveal eight binding sites for the human FcµR immunoglobulin domain on the IgM pentamer by cryogenic electron microscopy. One of the sites overlaps with the binding site for the polymeric immunoglobulin receptor (pIgR), but a different mode of FcµR binding explains its antibody isotype specificity. Variation in FcµR binding sites and their occupancy reflects the asymmetry of the IgM pentameric core and the versatility of FcµR binding. The complex explains engagement with polymeric serum IgM and the monomeric IgM B-cell receptor (BCR).


Assuntos
Linfócitos B , Receptores Fc , Humanos , Receptores Fc/metabolismo , Linfócitos B/metabolismo , Fragmentos Fc das Imunoglobulinas , Imunoglobulina M/metabolismo , Sítios de Ligação
6.
PLoS Pathog ; 19(3): e1011174, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36877739

RESUMO

Actins are filament-forming, highly-conserved proteins in eukaryotes. They are involved in essential processes in the cytoplasm and also have nuclear functions. Malaria parasites (Plasmodium spp.) have two actin isoforms that differ from each other and from canonical actins in structure and filament-forming properties. Actin I has an essential role in motility and is fairly well characterized. The structure and function of actin II are not as well understood, but mutational analyses have revealed two essential functions in male gametogenesis and in the oocyst. Here, we present expression analysis, high-resolution filament structures, and biochemical characterization of Plasmodium actin II. We confirm expression in male gametocytes and zygotes and show that actin II is associated with the nucleus in both stages in filament-like structures. Unlike actin I, actin II readily forms long filaments in vitro, and near-atomic structures in the presence or absence of jasplakinolide reveal very similar structures. Small but significant differences compared to other actins in the openness and twist, the active site, the D-loop, and the plug region contribute to filament stability. The function of actin II was investigated through mutational analysis, suggesting that long and stable filaments are necessary for male gametogenesis, while a second function in the oocyst stage also requires fine-tuned regulation by methylation of histidine 73. Actin II polymerizes via the classical nucleation-elongation mechanism and has a critical concentration of ~0.1 µM at the steady-state, like actin I and canonical actins. Similarly to actin I, dimers are a stable form of actin II at equilibrium.


Assuntos
Culicidae , Parasitos , Plasmodium , Animais , Masculino , Actinas/metabolismo , Parasitos/metabolismo , Citoesqueleto de Actina/metabolismo , Culicidae/metabolismo , Plasmodium falciparum/metabolismo , Plasmodium/metabolismo
7.
PLoS Biol ; 21(3): e3002005, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36862727

RESUMO

During its cytoplasmic replication, vaccinia virus assembles non-infectious spherical immature virions (IV) coated by a viral D13 lattice. Subsequently, IV mature into infectious brick-shaped intracellular mature virions (IMV) that lack D13. Here, we performed cryo-electron tomography (cryo-ET) of frozen-hydrated vaccinia-infected cells to structurally characterise the maturation process in situ. During IMV formation, a new viral core forms inside IV with a wall consisting of trimeric pillars arranged in a new pseudohexagonal lattice. This lattice appears as a palisade in cross-section. As maturation occurs, which involves a 50% reduction in particle volume, the viral membrane becomes corrugated as it adapts to the newly formed viral core in a process that does not appear to require membrane removal. Our study suggests that the length of this core is determined by the D13 lattice and that the consecutive D13 and palisade lattices control virion shape and dimensions during vaccinia assembly and maturation.


Assuntos
Vaccinia virus , Vacínia , Humanos , Montagem de Vírus , Citoplasma , Vírion
8.
Int J Mol Sci ; 24(5)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36901985

RESUMO

The assembly of von Willebrand factor (VWF) into ordered helical tubules within endothelial Weibel-Palade bodies (WPBs) is required for the efficient deployment of the protein at sites of vascular injury. VWF trafficking and storage are sensitive to cellular and environmental stresses that are associated with heart disease and heart failure. Altered storage of VWF manifests as a change in WPB morphology from a rod shape to a rounded shape and is associated with impaired VWF deployment during secretion. In this study, we examined the morphology, ultrastructure, molecular composition and kinetics of exocytosis of WPBs in cardiac microvascular endothelial cells isolated from explanted hearts of patients with a common form of heart failure, dilated cardiomyopathy (DCM; HCMECD), or from nominally healthy donors (controls; HCMECC). Using fluorescence microscopy, WPBs in HCMECC (n = 3 donors) showed the typical rod-shaped morphology containing VWF, P-selectin and tPA. In contrast, WPBs in primary cultures of HCMECD (n = 6 donors) were predominantly rounded in shape and lacked tissue plasminogen activator (t-PA). Ultrastructural analysis of HCMECD revealed a disordered arrangement of VWF tubules in nascent WPBs emerging from the trans-Golgi network. HCMECD WPBs still recruited Rab27A, Rab3B, Myosin-Rab Interacting Protein (MyRIP) and Synaptotagmin-like protein 4a (Slp4-a) and underwent regulated exocytosis with kinetics similar to that seen in HCMECc. However, secreted extracellular VWF strings from HCMECD were significantly shorter than for endothelial cells with rod-shaped WPBs, although VWF platelet binding was similar. Our observations suggest that VWF trafficking, storage and haemostatic potential are perturbed in HCMEC from DCM hearts.


Assuntos
Insuficiência Cardíaca , Fator de von Willebrand , Humanos , Fator de von Willebrand/metabolismo , Células Endoteliais/metabolismo , Ativador de Plasminogênio Tecidual/metabolismo , Células Cultivadas , Exocitose , Insuficiência Cardíaca/metabolismo
9.
Commun Biol ; 5(1): 1210, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36357779

RESUMO

SARS-CoV-2 is a lipid-enveloped Betacoronavirus and cause of the Covid-19 pandemic. To study the three-dimensional architecture of the virus, we perform electron cryotomography (cryo-ET) on SARS-Cov-2 virions and three variants revealing particles of regular cylindrical morphology. The ribonucleoprotein particles packaging the genome in the virion interior form a dense, double layer assembly with a cylindrical shape related to the overall particle morphology. This organisation suggests structural interactions important to virus assembly.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Pandemias , Elétrons , Microscopia Crioeletrônica/métodos , Vírion
10.
Nat Commun ; 13(1): 6314, 2022 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-36274064

RESUMO

Immunoglobulin M (IgM) is the most ancient of the five isotypes of immunoglobulin (Ig) molecules and serves as the first line of defence against pathogens. Here, we use cryo-EM to image the structure of the human full-length IgM pentamer, revealing antigen binding domains flexibly attached to the asymmetric and rigid core formed by the Cµ4 and Cµ3 constant regions and the J-chain. A hinge is located at the Cµ3/Cµ2 domain interface, allowing Fabs and Cµ2 to pivot as a unit both in-plane and out-of-plane. This motion is different from that observed in IgG and IgA, where the two Fab arms are able to swing independently. A biased orientation of one pair of Fab arms results from asymmetry in the constant domain (Cµ3) at the IgM subunit interacting most extensively with the J-chain. This may influence the multi-valent binding to surface-associated antigens and complement pathway activation. By comparison, the structure of the Fc fragment in the IgM monomer is similar to that of the pentamer, but is more dynamic in the Cµ4 domain.


Assuntos
Imunoglobulina A , Fragmentos Fc das Imunoglobulinas , Humanos , Imunoglobulina M , Fragmentos Fc das Imunoglobulinas/química , Imunoglobulina G , Fragmentos Fab das Imunoglobulinas/química
11.
Proc Natl Acad Sci U S A ; 119(33): e2208011119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35939703

RESUMO

The subunits of the influenza hemagglutinin (HA) trimer are synthesized as single-chain precursors (HA0s) that are proteolytically cleaved into the disulfide-linked polypeptides HA1 and HA2. Cleavage is required for activation of membrane fusion at low pH, which occurs at the beginning of infection following transfer of cell-surface-bound viruses into endosomes. Activation results in extensive changes in the conformation of cleaved HA. To establish the overall contribution of cleavage to the mechanism of HA-mediated membrane fusion, we used cryogenic electron microscopy (cryo-EM) to directly image HA0 at neutral and low pH. We found extensive pH-induced structural changes, some of which were similar to those described for intermediates in the refolding of cleaved HA at low pH. They involve a partial extension of the long central coiled coil formed by melting of the preexisting secondary structure, threading it between the membrane-distal domains, and subsequent refolding as extended helices. The fusion peptide, covalently linked at its N terminus, adopts an amphipathic helical conformation over part of its length and is repositioned and packed against a complementary surface groove of conserved residues. Furthermore, and in contrast to cleaved HA, the changes in HA0 structure at low pH are reversible on reincubation at neutral pH. We discuss the implications of covalently restricted HA0 refolding for the cleaved HA conformational changes that mediate membrane fusion and for the action of antiviral drug candidates and cross-reactive anti-HA antibodies that can block influenza infectivity.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza , Fusão de Membrana , Orthomyxoviridae , Internalização do Vírus , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Humanos , Concentração de Íons de Hidrogênio , Orthomyxoviridae/fisiologia , Conformação Proteica
12.
PLoS Pathog ; 18(4): e1010408, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35377914

RESUMO

Malaria is responsible for half a million deaths annually and poses a huge economic burden on the developing world. The mosquito-borne parasites (Plasmodium spp.) that cause the disease depend upon an unconventional actomyosin motor for both gliding motility and host cell invasion. The motor system, often referred to as the glideosome complex, remains to be understood in molecular terms and is an attractive target for new drugs that might block the infection pathway. Here, we present the high-resolution structure of the actomyosin motor complex from Plasmodium falciparum. The complex includes the malaria parasite actin filament (PfAct1) complexed with the class XIV myosin motor (PfMyoA) and its two associated light-chains. The high-resolution core structure reveals the PfAct1:PfMyoA interface in atomic detail, while at lower-resolution, we visualize the PfMyoA light-chain binding region, including the essential light chain (PfELC) and the myosin tail interacting protein (PfMTIP). Finally, we report a bare PfAct1 filament structure at improved resolution.


Assuntos
Malária , Parasitos , Citoesqueleto de Actina/metabolismo , Actomiosina/metabolismo , Animais , Malária/metabolismo , Miosinas/metabolismo , Parasitos/metabolismo , Proteínas de Protozoários/metabolismo
13.
Microscopy (Oxf) ; 71(Supplement_1): i15-i22, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35275182

RESUMO

Cryogenic electron microscopy can be widely applied to biological specimens from the molecular to the cellular scale. In single-particle analysis, 3D structures may be obtained in high resolution by averaging 2D images of single particles in random orientations. For pleomorphic specimens, structures may be obtained by recording the tilt series of a single example of the specimen and calculating tomograms. Where many copies of a single structure such as a protein or nucleic acid assembly are present within the tomogram, averaging of the sub-volumes (subtomogram averaging) has been successfully applied. The choice of data collection method for any given specimen may depend on the structural question of interest and is determined by the radiation sensitivity of the specimen. Here, we survey some recent developments on the use of hybrid methods for recording and analysing data from radiation-sensitive biological specimens. These include single-particle reconstruction from 2D images where additional views are recorded at a single tilt angle of the specimen and methods where image tilt series, initially used for tomogram reconstruction, are processed as individual single-particle images. There is a continuum of approaches now available to maximize structural information obtained from the specimen.


Assuntos
Processamento de Imagem Assistida por Computador , Imagem Individual de Molécula , Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Processamento de Imagem Assistida por Computador/métodos , Microscopia Eletrônica
14.
Nat Commun ; 13(1): 1178, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35246509

RESUMO

Recently emerged variants of SARS-CoV-2 contain in their surface spike glycoproteins multiple substitutions associated with increased transmission and resistance to neutralising antibodies. We have examined the structure and receptor binding properties of spike proteins from the B.1.1.7 (Alpha) and B.1.351 (Beta) variants to better understand the evolution of the virus in humans. Spikes of both variants have the same mutation, N501Y, in the receptor-binding domains. This substitution confers tighter ACE2 binding, dependent on the common earlier substitution, D614G. Each variant spike has acquired other key changes in structure that likely impact virus pathogenesis. The spike from the Alpha variant is more stable against disruption upon binding ACE2 receptor than all other spikes studied. This feature is linked to the acquisition of a more basic substitution at the S1-S2 furin site (also observed for the variants of concern Delta, Kappa, and Omicron) which allows for near-complete cleavage. In the Beta variant spike, the presence of a new substitution, K417N (also observed in the Omicron variant), in combination with the D614G, stabilises a more open spike trimer, a conformation required for receptor binding. Our observations suggest ways these viruses have evolved to achieve greater transmissibility in humans.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/metabolismo , Mutação de Sentido Incorreto , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/ultraestrutura , Sítios de Ligação/genética , COVID-19/transmissão , COVID-19/virologia , Microscopia Crioeletrônica , Efeito Citopatogênico Viral/genética , Evolução Molecular , Interações Hospedeiro-Patógeno , Humanos , Cinética , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo
15.
Elife ; 102021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34286694

RESUMO

Through membrane sealing and disassembly of spindle microtubules, the Endosomal Sorting Complex Required for Transport-III (ESCRT-III) machinery has emerged as a key player in the regeneration of a sealed nuclear envelope (NE) during mitotic exit, and in the repair of this organelle during interphase rupture. ESCRT-III assembly at the NE occurs transiently during mitotic (M) exit and is initiated when CHMP7, an ER-localised ESCRT-II/ESCRT-III hybrid protein, interacts with the Inner Nuclear Membrane (INM) protein LEM2. Whilst classical nucleocytoplasmic transport mechanisms have been proposed to separate LEM2 and CHMP7 during interphase, it is unclear how CHMP7 assembly is suppressed in mitosis when NE and ER identities are mixed. Here, we use live cell imaging and protein biochemistry to examine the biology of these proteins during M-exit. Firstly, we show that CHMP7 plays an important role in the dissolution of LEM2 clusters that form at the NE during M-exit. Secondly, we show that CDK1 phosphorylates CHMP7 upon M-entry at Ser3 and Ser441 and that this phosphorylation reduces CHMP7's interaction with LEM2, limiting its assembly during M-phase. We show that spatiotemporal differences in the dephosphorylation of CHMP7 license its assembly at the NE during telophase, but restrict its assembly on the ER at this time. Without CDK1 phosphorylation, CHMP7 undergoes inappropriate assembly in the peripheral ER during M-exit, capturing LEM2 and downstream ESCRT-III components. Lastly, we establish that a microtubule network is dispensable for ESCRT-III assembly at the reforming nuclear envelope. These data identify a key cell-cycle control programme allowing ESCRT-III-dependent nuclear regeneration.


Assuntos
Proteína Quinase CDC2/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Membrana Nuclear/metabolismo , Proteína Quinase CDC2/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Células HeLa , Humanos , Proteínas de Membrana , Microtúbulos/metabolismo , Mitose , Proteínas Nucleares , Telófase
16.
Sci Adv ; 7(22)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33888467

RESUMO

The coronaviral spike is the dominant viral antigen and the target of neutralizing antibodies. We show that SARS-CoV-2 spike binds biliverdin and bilirubin, the tetrapyrrole products of heme metabolism, with nanomolar affinity. Using cryo-electron microscopy and x-ray crystallography, we mapped the tetrapyrrole interaction pocket to a deep cleft on the spike N-terminal domain (NTD). At physiological concentrations, biliverdin significantly dampened the reactivity of SARS-CoV-2 spike with immune sera and inhibited a subset of neutralizing antibodies. Access to the tetrapyrrole-sensitive epitope is gated by a flexible loop on the distal face of the NTD. Accompanied by profound conformational changes in the NTD, antibody binding requires relocation of the gating loop, which folds into the cleft vacated by the metabolite. Our results indicate that SARS-CoV-2 spike NTD harbors a dominant epitope, access to which can be controlled by an allosteric mechanism that is regulated through recruitment of a metabolite.


Assuntos
COVID-19/imunologia , Heme/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Anticorpos Neutralizantes/imunologia , Bilirrubina/metabolismo , Biliverdina/metabolismo , Microscopia Crioeletrônica , Cristalografia por Raios X , Epitopos , Humanos , Soros Imunes , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade
17.
Nat Commun ; 12(1): 1694, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33727554

RESUMO

The lipid-enveloped influenza C virus contains a single surface glycoprotein, the haemagglutinin-esterase-fusion (HEF) protein, that mediates receptor binding, receptor destruction, and membrane fusion at the low pH of the endosome. Here we apply electron cryotomography and subtomogram averaging to describe the structural basis for hexagonal lattice formation by HEF on the viral surface. The conformation of the glycoprotein in situ is distinct from the structure of the isolated trimeric ectodomain, showing that a splaying of the membrane distal domains is required to mediate contacts that form the lattice. The splaying of these domains is also coupled to changes in the structure of the stem region which is involved in membrane fusion, thereby linking HEF's membrane fusion conformation with its assembly on the virus surface. The glycoprotein lattice can form independent of other virion components but we show a major role for the matrix layer in particle formation.


Assuntos
Gammainfluenzavirus/metabolismo , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Animais , Cães , Hemaglutininas Virais/química , Hemaglutininas Virais/metabolismo , Gammainfluenzavirus/ultraestrutura , Células Madin Darby de Rim Canino , Fusão de Membrana , Modelos Moleculares , Multimerização Proteica , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/metabolismo , Vírion/ultraestrutura
18.
J Struct Biol ; 213(2): 107729, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33774138

RESUMO

Bacterial type III secretion systems assemble the axial structures of both injectisomes and flagella. Injectisome type III secretion systems subsequently secrete effector proteins through their hollow needle into a host, requiring co-ordination. In the Salmonella enterica serovar Typhimurium SPI-2 injectisome, this switch is triggered by sensing the neutral pH of the host cytoplasm. Central to specificity switching is a nonameric SctV protein with an N-terminal transmembrane domain and a toroidal C-terminal cytoplasmic domain. A 'gatekeeper' complex interacts with the SctV cytoplasmic domain in a pH dependent manner, facilitating translocon secretion while repressing effector secretion through a poorly understood mechanism. To better understand the role of SctV in SPI-2 translocon-effector specificity switching, we purified full-length SctV and determined its toroidal cytoplasmic region's structure using cryo-EM. Structural comparisons and molecular dynamics simulations revealed that the cytoplasmic torus is stabilized by its core subdomain 3, about which subdomains 2 and 4 hinge, varying the flexible outside cleft implicated in gatekeeper and substrate binding. In light of patterns of surface conservation, deprotonation, and structural motion, the location of previously identified critical residues suggest that gatekeeper binds a cleft buried between neighboring subdomain 4s. Simulations suggest that a local pH change from 5 to 7.2 stabilizes the subdomain 3 hinge and narrows the central aperture of the nonameric torus. Our results are consistent with a model of local pH sensing at SctV, where pH-dependent dynamics of SctV cytoplasmic domain affect binding of gatekeeper complex.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Salmonella typhimurium , Sistemas de Secreção Tipo III/química , Proteínas de Bactérias/genética , Microscopia Crioeletrônica , Citoplasma/metabolismo , Concentração de Íons de Hidrogênio , Modelos Moleculares , Simulação de Dinâmica Molecular , Domínios Proteicos , Salmonella typhimurium/química , Salmonella typhimurium/patogenicidade , Salmonella typhimurium/fisiologia , Sistemas de Secreção Tipo III/metabolismo
19.
medRxiv ; 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33532784

RESUMO

The coronaviral spike is the dominant viral antigen and the target of neutralizing antibodies. We show that SARS-CoV-2 spike binds biliverdin and bilirubin, the tetrapyrrole products of haem metabolism, with nanomolar affinity. Using cryo-electron microscopy and X-ray crystallography we mapped the tetrapyrrole interaction pocket to a deep cleft on the spike N-terminal domain (NTD). At physiological concentrations, biliverdin significantly dampened the reactivity of SARS-CoV-2 spike with immune sera and inhibited a subset of neutralizing antibodies. Access to the tetrapyrrole-sensitive epitope is gated by a flexible loop on the distal face of the NTD. Accompanied by profound conformational changes in the NTD, antibody binding requires relocation of the gating loop, which folds into the cleft vacated by the metabolite. Our results indicate that the virus co-opts the haem metabolite for the evasion of humoral immunity via allosteric shielding of a sensitive epitope and demonstrate the remarkable structural plasticity of the NTD.

20.
Nat Methods ; 18(2): 156-164, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33542514

RESUMO

This paper describes outcomes of the 2019 Cryo-EM Model Challenge. The goals were to (1) assess the quality of models that can be produced from cryogenic electron microscopy (cryo-EM) maps using current modeling software, (2) evaluate reproducibility of modeling results from different software developers and users and (3) compare performance of current metrics used for model evaluation, particularly Fit-to-Map metrics, with focus on near-atomic resolution. Our findings demonstrate the relatively high accuracy and reproducibility of cryo-EM models derived by 13 participating teams from four benchmark maps, including three forming a resolution series (1.8 to 3.1 Å). The results permit specific recommendations to be made about validating near-atomic cryo-EM structures both in the context of individual experiments and structure data archives such as the Protein Data Bank. We recommend the adoption of multiple scoring parameters to provide full and objective annotation and assessment of the model, reflective of the observed cryo-EM map density.


Assuntos
Microscopia Crioeletrônica/métodos , Modelos Moleculares , Cristalografia por Raios X , Conformação Proteica , Proteínas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA