Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biology (Basel) ; 12(5)2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37237528

RESUMO

Alveolar (AE) and cystic (CE) echinococcosis are two parasitic diseases caused by the tapeworms Echinococcus multilocularis and E. granulosus sensu lato (s. l.), respectively. Currently, AE and CE are mainly diagnosed by means of imaging techniques, serology, and clinical and epidemiological data. However, no viability markers that indicate parasite state during infection are available. Extracellular small RNAs (sRNAs) are short non-coding RNAs that can be secreted by cells through association with extracellular vesicles, proteins, or lipoproteins. Circulating sRNAs can show altered expression in pathological states; hence, they are intensively studied as biomarkers for several diseases. Here, we profiled the sRNA transcriptomes of AE and CE patients to identify novel biomarkers to aid in medical decisions when current diagnostic procedures are inconclusive. For this, endogenous and parasitic sRNAs were analyzed by sRNA sequencing in serum from disease negative, positive, and treated patients and patients harboring a non-parasitic lesion. Consequently, 20 differentially expressed sRNAs associated with AE, CE, and/or non-parasitic lesion were identified. Our results represent an in-depth characterization of the effect E. multilocularis and E. granulosus s. l. exert on the extracellular sRNA landscape in human infections and provide a set of novel candidate biomarkers for both AE and CE detection.

2.
BMC Genomics ; 24(1): 114, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36922762

RESUMO

BACKGROUND: Echinococcus granulosus sensu lato has a complex developmental biology with a variety of factors relating to both intermediate and final hosts. To achieve maximum parasite adaptability, the development of the cestode is dependent on essential changes in transcript regulation. Transcription factors (TFs) and miRNAs are known as master regulators that affect the expression of downstream genes through a wide range of metabolic and signaling pathways. In this study, we aimed to develop a regulatory miRNA-Transcription factor (miRNA-TF) network across early developmental stages of E. granulosus protoscoleces by performing in silico analysis, and to experimentally validate TFs expression in protoscoleces obtained from in vitro culture, and from in vivo experiments. RESULTS: We obtained list of 394 unique E. granulosus TFs and matched them with 818 differentially expressed genes which identified 41 predicted TFs with differential expression. These TFs were used to predict the potential targets of 31 differentially expressed miRNAs. As a result, eight miRNAs and eight TFs were found, and the predicted network was constructed using Cytoscape. At least four miRNAs (egr-miR-124a, egr-miR-124b-3p, egr-miR-745-3p, and egr-miR-87-3p) and their corresponding differentially expressed TFs (Zinc finger protein 45, Early growth response protein 3, Ecdysone induced protein 78c and ETS transcription factor elf 2) were highlighted in this investigation. The expression of predicted differentially expressed TFs obtained from in vitro and in vivo experiments, were experimentally validated by quantitative polymerase chain reaction. This confirmed findings of RNA-seq data. CONCLUSION: miRNA-TF networks presented in this study control some of the most important metabolic and signaling pathways in the development and life cycle of E. granulosus, providing a potential approach for disrupting the early hours of dog infection and preventing the development of the helminth in the final host.


Assuntos
Equinococose , Echinococcus granulosus , MicroRNAs , Animais , Cães , Echinococcus granulosus/genética , Echinococcus granulosus/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Equinococose/parasitologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica
3.
PLoS One ; 16(11): e0259104, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34762657

RESUMO

Cestodes are platyhelminth parasites with a wide range of hosts that cause neglected diseases. Neurotransmitter signaling is of critical importance for these parasites which lack circulatory, respiratory and digestive systems. For example, serotonin (5-HT) and serotonergic G-protein coupled receptors (5-HT GPCRs) play major roles in cestode motility, development and reproduction. In previous work, we deorphanized a group of 5-HT7 type GPCRs from cestodes. However, little is known about another type of 5-HT GPCR, the 5-HT1 clade, which has been studied in several invertebrate phyla but not in platyhelminthes. Three putative 5-HT GPCRs from Echinococcus canadensis, Mesocestoides vogae (syn. M. corti) and Hymenolepis microstoma were cloned, sequenced and bioinformatically analyzed. Evidence grouped these new sequences within the 5-HT1 clade of GPCRs but differences in highly conserved GPCR motifs were observed. Transcriptomic analysis, heterologous expression and immunolocalization studies were performed to characterize the E. canadensis receptor, called Eca-5-HT1a. Functional heterologous expression studies showed that Eca-5-HT1a is highly specific for serotonin. 5-Methoxytryptamine and α-methylserotonin, both known 5-HT GPCR agonists, give stimulatory responses whereas methysergide, a known 5-HT GPCR ligand, give an antagonist response in Eca-5-HT1a. Mutants obtained by the substitution of key predicted residues resulted in severe impairment of receptor activity, confirming that indeed, these residues have important roles in receptor function. Immunolocalization studies on the protoscolex stage from E. canadensis, showed that Eca-5-HT1a is localized in branched fibers which correspond to the nervous system of the parasite. The patterns of immunoreactive fibers for Eca-5-HT1a and for serotonin were intimately intertwined but not identical, suggesting that they are two separate groups of fibers. These data provide the first functional, pharmacological and localization report of a serotonergic receptor that putatively belongs to the 5-HT1 type of GPCRs in cestodes. The serotonergic GPCR characterized here may represent a new target for antiparasitic intervention.


Assuntos
Cestoides/metabolismo , Proteínas de Helminto/metabolismo , Sistema Nervoso/metabolismo , Receptores 5-HT1 de Serotonina/metabolismo , Sequência de Aminoácidos , Animais , Echinococcus/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Helminto/química , Proteínas de Helminto/genética , Humanos , Hymenolepis/metabolismo , Receptores 5-HT1 de Serotonina/química , Receptores 5-HT1 de Serotonina/genética , Alinhamento de Sequência , Antagonistas da Serotonina/farmacologia , Agonistas do Receptor de Serotonina/farmacologia
4.
Parasitol Res ; 120(9): 3203-3214, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34351489

RESUMO

MicroRNAs are critical gene regulators at the post-transcriptional level and play essential roles in numerous developmental processes in metazoan parasites including the causative agent of cystic echinococcosis, Echinococcus granulosus. The molecular basis of different patterns of E. granulosus development in the canine definitive host and in in vitro culture systems is poorly understood. In the present study, miRNA transcriptomes of the strobilated worms derived from experimental infection in the definitive host were compared with those from diphasic culture system after 60-day protoscoleces cultivation. Total RNA was extracted from in vivo- and in vitro-derived strobilated worms. Small RNA libraries were constructed, and deep sequencing was performed. Subsequently, differential miRNA expressions and target predictions were obtained, and pathway analysis was performed by gene ontology and KEGG. Seven miRNAs were differentially expressed between the in vivo- and in vitro-derived worms. In addition, we reported 13 novel miRNA candidates and 42 conserved miRNAs. Four out of five top miRNAs with the highest read counts were shared between the in vivo and in vitro-derived worms, i.e., egr-miR-10a-5p, egr-let-7-5p, egr-bantam-3p, and egr-miR-71-5p. Target prediction of the differential miRNAs between the two systems showed significant differences in the membrane-enclosed lumen, membrane part, and an intrinsic component of the membrane. Findings of KEGG analysis indicated that differentially expressed miRNAs were involved in hippo, MAPK, and WNT signaling pathways. The study demonstrated a significant difference in miRNA transcriptomes and related signaling pathways between the two systems, suggesting the importance of host-parasite interplay in the fate of protoscoleces development in in vivo and in vitro systems.


Assuntos
Equinococose , Echinococcus granulosus , MicroRNAs , Animais , Cães , Equinococose/veterinária , Echinococcus granulosus/genética , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/genética , Transcriptoma
5.
Parasitol Res ; 119(4): 1401-1408, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32130486

RESUMO

Fatty acid-binding proteins (FABPs) are small intracellular proteins that reversibly bind fatty acids and other hydrophobic ligands. In cestodes, due to their inability to synthesise fatty acids de novo, FABPs have been proposed as essential proteins, and thus, as possible drug targets and/or carriers against these parasites. We performed data mining in Echinococcus multilocularis and Echinococcus granulosus genomes in order to test whether this family of proteins is more complex than previously reported. By exploring the genomes of E. multilocularis and E. granulosus, six genes coding for FABPs were found in each organism. In the case of E. granulosus, all of them have different coding sequences, whereas in E. multilocularis, two of the genes code for the same protein. Remarkably, one of the genes (in both cestodes) encodes a FABP with a C-terminal extension unusual for this family of proteins. The newly described genes present variations in their structure in comparison with previously described FABP genes in Echinococcus spp. The coding sequences for E. multilocularis were validated by cloning and sequencing. Moreover, differential expression patterns of FABPs were observed at different stages of the life cycle of E. multilocularis by exploring transcriptomic data from several sources. In summary, FABP family in cestodes is far more complex than previously thought and includes new members that seem to be only present in flatworms.


Assuntos
Echinococcus granulosus/genética , Echinococcus multilocularis/genética , Proteínas de Ligação a Ácido Graxo/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , DNA de Protozoário/genética , Ácidos Graxos/metabolismo , Genoma de Protozoário/genética , Análise de Sequência , Análise de Sequência de DNA , Transcriptoma/genética
6.
Artigo em Inglês | MEDLINE | ID: mdl-30897528

RESUMO

Cestode parasites cause neglected diseases, such as echinococcosis and cysticercosis, which represent a significant problem in human and animal health. Benzimidazoles and praziquantel are the only available drugs for chemotherapy and it is therefore important to identify new alternative drugs against cestode parasites. Histone deacetylases (HDACs) are validated drug targets for the treatment of cancer and other diseases, including neglected diseases. However, knowledge of HDACs in cestodes is very scarce. In this work, we investigated cestode HDACs as potential drug targets to develop new therapies against neglected diseases caused by cestodes. Here we showed the full repertoire of HDAC coding genes in several members of the class Cestoda. Between 6 and 7 zinc-dependent HDAC coding genes were identified in the genomes of species from Echinococcus, Taenia, Mesocestoides and Hymenolepis genera. We classified them as Class I and II HDACs and analyzed their transcriptional expression levels throughout developmental stages of Echinococcus spp. We confirmed for the first time the complete HDAC8 nucleotide sequences from Echinococcus canadensis G7 and Mesocestoides corti. Homology models for these proteins showed particular structural features which differentiate them from HDAC8 from Homo sapiens. Furthermore, we showed that Trichostatin A (TSA), a pan-HDAC inhibitor, decreases the viability of M. corti, alters its tegument and morphology and produces an increment of the total amount of acetylated proteins, including acetylated histone H4. These results suggest that HDAC from cestodes are functional and might play important roles on survival and development. The particular structural features observed in cestode HDAC8 proteins suggest that these enzymes could be selectively targeted. This report provides the basis for further studies on cestode HDAC enzymes and for discovery of new HDAC inhibitors for the treatment of neglected diseases caused by cestode parasites.


Assuntos
Cestoides/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Doenças Negligenciadas/tratamento farmacológico , Doenças Negligenciadas/parasitologia , Animais , Cestoides/enzimologia , Infecções por Cestoides/tratamento farmacológico , Feminino , Histonas/metabolismo , Ácidos Hidroxâmicos/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Ratos , Ratos Wistar
7.
PLoS Negl Trop Dis ; 12(2): e0006267, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29425245

RESUMO

BACKGROUND: Cestodes are a diverse group of parasites, some of them being agents of neglected diseases. In cestodes, little is known about the functional properties of G protein coupled receptors (GPCRs) which have proved to be highly druggable targets in other organisms. Notably, serotoninergic G-protein coupled receptors (5-HT GPCRs) play major roles in key functions like movement, development and reproduction in parasites. METHODOLOGY/PRINCIPAL FINDINGS: Three 5-HT GPCRs from Echinococcus granulosus and Mesocestoides corti were cloned, sequenced, bioinformatically analyzed and functionally characterized. Multiple sequence alignment with other GPCRs showed the presence of seven transmembrane segments and conserved motifs but interesting differences were also observed. Phylogenetic analysis grouped these new sequences within the 5-HT7 clade of GPCRs. Molecular modeling showed a striking resemblance in the spatial localization of key residues with their mammalian counterparts. Expression analysis using available RNAseq data showed that both E. granulosus sequences are expressed in larval and adult stages. Localization studies performed in E. granulosus larvae with a fluorescent probe produced a punctiform pattern concentrated in suckers. E. granulosus and M. corti larvae showed an increase in motility in response to serotonin. Heterologous expression revealed elevated levels of cAMP production in response to 5-HT and two of the GPCRs showed extremely high sensitivity to 5-HT (picomolar range). While each of these GPCRs was activated by 5-HT, they exhibit distinct pharmacological properties (5-HT sensitivity, differential responsiveness to ligands). CONCLUSIONS/SIGNIFICANCE: These data provide the first functional report of GPCRs in parasitic cestodes. The serotoninergic GPCRs characterized here may represent novel druggable targets for antiparasitic intervention.


Assuntos
Cestoides/fisiologia , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Motivos de Aminoácidos , Animais , Cestoides/genética , Cestoides/crescimento & desenvolvimento , Infecções por Cestoides/tratamento farmacológico , Clonagem Molecular , Biologia Computacional , Echinococcus granulosus/genética , Echinococcus granulosus/fisiologia , Larva/fisiologia , Mesocestoides/genética , Mesocestoides/crescimento & desenvolvimento , Mesocestoides/fisiologia , Modelos Moleculares , Filogenia , Conformação Proteica , Receptores Acoplados a Proteínas G/genética , Alinhamento de Sequência , Serotonina/farmacologia
8.
Vet Parasitol ; 240: 60-67, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28433410

RESUMO

Echinococcosis is a parasitic zoonosis that is considered as a neglected disease by the World Health Organization. The species Echinococcus oligarthrus is one of the causative agents of Neotropical echinococcosis, which is a poorly understood disease that requires a complex medical examination, may threaten human life, and is frequently associated with a low socioeconomic status. Morphological and genetic diversity in E. oligarthrus remains unknown. The aim of this work is to identify and characterize E. oligarthrus infections in sylvatic animals from the Upper Paraná Atlantic Forest in the province of Misiones, Argentina, by following an integrative approach that links morphological, genetic and ecological aspects. This study demonstrates, for the first time, one of the complete life cycles of E. oligarthrus in an important ecoregion. The Upper Paraná Atlantic Forest constitutes the largest remnant continuous forest of the Atlantic Forest, representing 7% of the world's biodiversity. This is the first molecular determination of E. oligarthrus in Argentina. In addition, the agouti (Dasyprocta azarae), the ocelot (Leopardus pardalis) and the puma (Puma concolor) were identified as sylvatic hosts of Neotropical echinococcosis caused by E. oligarthrus. Mitochondrial and nuclear molecular marker analyses showed a high genetic diversity in E. oligarthrus. Moreover, the genetic distance found among E. oligarthrus isolates is higher than the one observed among Echinococcus granulosus genotypes, which clearly indicates that there are at least two different E. oligarthrus populations in Argentina. This study provides valuable information to understand the underlying conditions that favour the maintenance of E. oligarthrus in sylvatic cycles and to evaluate its zoonotic significance for devising preventive measures for human and animal wellbeing.


Assuntos
Equinococose/veterinária , Echinococcus/genética , Variação Genética , Animais , Argentina/epidemiologia , Dasyproctidae/parasitologia , Equinococose/epidemiologia , Equinococose/parasitologia , Echinococcus/classificação , Felidae/parasitologia , Filogenia
9.
PLoS Negl Trop Dis ; 7(1): e2017, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23350011

RESUMO

Echinococcus granulosus is characterized by high intra-specific variability (genotypes G1-G10) and according to the new molecular phylogeny of the genus Echinococcus, the E. granulosus complex has been divided into E. granulosus sensu stricto (G1-G3), E. equinus (G4), E. ortleppi (G5), and E. canadensis (G6-G10). The molecular characterization of E. granulosus isolates is fundamental to understand the spatio-temporal epidemiology of this complex in many endemic areas with the simultaneous occurrence of different Echinococcus species and genotypes. To simplify the genotyping of the E. granulosus complex we developed a single-tube multiplex PCR (mPCR) allowing three levels of discrimination: (i) Echinococcus genus, (ii) E. granulosus complex in common, and (iii) the specific genotype within the E. granulosus complex. The methodology was established with known DNA samples of the different strains/genotypes, confirmed on 42 already genotyped samples (Spain: 22 and Bulgaria: 20) and then successfully applied on 153 unknown samples (Tunisia: 114, Algeria: 26 and Argentina: 13). The sensitivity threshold of the mPCR was found to be 5 ng Echinoccoccus DNA in a mixture of up to 1 µg of foreign DNA and the specificity was 100% when template DNA from closely related members of the genus Taenia was used. Additionally to DNA samples, the mPCR can be carried out directly on boiled hydatid fluid or on alkaline-lysed frozen or fixed protoscoleces, thus avoiding classical DNA extractions. However, when using Echinococcus eggs obtained from fecal samples of infected dogs, the sensitivity of the mPCR was low (<40%). Thus, except for copro analysis, the mPCR described here has a high potential for a worldwide application in large-scale molecular epidemiological studies on the Echinococcus genus.


Assuntos
Equinococose/epidemiologia , Equinococose/veterinária , Echinococcus granulosus/classificação , Echinococcus granulosus/isolamento & purificação , Técnicas de Diagnóstico Molecular/métodos , Reação em Cadeia da Polimerase Multiplex/métodos , Parasitologia/métodos , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Cães , Equinococose/parasitologia , Echinococcus granulosus/genética , Humanos , Epidemiologia Molecular/métodos
10.
Am J Trop Med Hyg ; 79(1): 89-92, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18606769

RESUMO

A molecular PCR study using DNA from 21 hydatid cysts was performed to determine which strain type is responsible for human infection in Peru. The mitochondrial cytochrome c oxidase subunit 1 (CO1) gene was amplified in 20 out of 21 samples, revealing that all but 1 sample (19/20, 95%) belonged to the common sheep strain (G1). The remaining samples belonged to the camel strain (G6). The G1 genotype was most frequently found in human cases of cystic hydatid disease (CHD) in Peru. Local control measures should focus primarily on decreasing dog and sheep infection rather than intermediate reservoirs.


Assuntos
Camelus/parasitologia , DNA de Helmintos/química , DNA Mitocondrial/química , Echinococcus granulosus/classificação , Complexo IV da Cadeia de Transporte de Elétrons/genética , Zoonoses/parasitologia , Animais , DNA de Helmintos/análise , DNA Mitocondrial/análise , Cães , Equinococose , Echinococcus granulosus/enzimologia , Echinococcus granulosus/genética , Genótipo , Humanos , Peru/epidemiologia , Reação em Cadeia da Polimerase , Ovinos , Doenças dos Ovinos/parasitologia , Zoonoses/epidemiologia , Zoonoses/transmissão
11.
Exp Parasitol ; 119(4): 499-505, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18342311

RESUMO

Cystic hydatid disease in humans is caused by the zoonotic parasite Echinococcus granulosus. As an aid to control transmission of the parasite, a vaccine has been produced for prevention of infection in the parasite's natural animal intermediate hosts. The vaccine utilizes the recombinant oncosphere protein, EG95. An investigation into the genetic variability of EG95 was undertaken in this study to assess potential antigenic variability in E. granulosus with respect to this host-protective protein. Gene-specific PCR conditions were first established to preferentially amplify the EG95 vaccine-encoding gene (designated eg95-1) from the E. granulosus genome that also contains several other EG95-related genes. The optimized PCR conditions were used to amplify eg95-1 from several parasite isolates in order to determine the protein-coding sequence of the gene. An identical eg95-1 gene was amplified from parasites showing a G1 or G2 genotype of E. granulosus. However, from isolates having a G6 or G7 genotype, a gene was amplified which had substantial nucleotide substitutions (encoding amino acid substitutions) compared with the eg95 gene family members. The amino acid substitutions of EG95 in the G6/G7 genotypes may affect the antigenicity/efficacy of the EG95 recombinant antigen against parasites of these genotypes. These findings indicate that characterization of eg95 gene family members in other strains/isolates of E. granulosus may provide valuable information about the potential for the EG95 hydatid vaccine to be effective against E. granulosus strains other than the G1 genotype.


Assuntos
Antígenos de Helmintos/genética , Equinococose/parasitologia , Echinococcus granulosus/imunologia , Proteínas de Helminto/genética , Vacinas Sintéticas/genética , Sequência de Aminoácidos , Animais , Antígenos de Helmintos/química , Antígenos de Helmintos/imunologia , Southern Blotting , DNA de Helmintos/química , Cães , Equinococose/prevenção & controle , Echinococcus granulosus/classificação , Echinococcus granulosus/genética , Variação Genética , Genótipo , Proteínas de Helminto/química , Proteínas de Helminto/imunologia , Humanos , Dados de Sequência Molecular , Família Multigênica , Reação em Cadeia da Polimerase , Ovinos , Doenças dos Ovinos/parasitologia , Doenças dos Ovinos/prevenção & controle , Doenças dos Ovinos/transmissão , Suínos , Vacinas Sintéticas/química , Vacinas Sintéticas/imunologia , Zoonoses/transmissão
12.
Gene ; 411(1-2): 1-9, 2008 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-18272295

RESUMO

We have sequenced and partially characterized an Echinococcus granulosus cDNA, termed egat1, from a protoscolex signal sequence trap (SST) cDNA library. The isolated 1627 bp long cDNA contains an ORF of 489 amino acids and shows an amino acid identity of 30% with neutral and excitatory amino acid transporters members of the Dicarboxylate/Amino Acid Na+ and/or H+ Cation Symporter family (DAACS) (TC 2.A.23). Additional bioinformatics analysis of EgAT1, confirmed the results obtained by similarity searches and showed the presence of 9 to 10 transmembrane domains, consensus sequences for N-glycosylation between the third and fourth transmembrane domain, a highly similar hydropathy profile with ASCT1 (a known member of DAACS family), high score with SDF (Sodium Dicarboxilate Family) and similar motifs with EDTRANSPORT, a fingerprint of excitatory amino acid transporters. The localization of the putative amino acid transporter was analyzed by in situ hybridization and immunofluorescence in protoscoleces and associated germinal layer. The in situ hybridization labelling indicates the distribution of egat1 mRNA throughout the tegument. EgAT1 protein, which showed in Western blots a molecular mass of approximately 60 kD, is localized in the subtegumental region of the metacestode, particularly around suckers and rostellum of protoscoleces and layers from brood capsules. The sequence and expression analyses of EgAT1 pave the way for functional analysis of amino acids transporters of E. granulosus and its evaluation as new drug targets against cystic echinococcosis.


Assuntos
Sistemas de Transporte de Aminoácidos/genética , Echinococcus granulosus/genética , Sequência de Aminoácidos , Animais , Biologia Computacional , Expressão Gênica , Imuno-Histoquímica , Dados de Sequência Molecular , Análise de Sequência de DNA
13.
Parasitol Int ; 55 Suppl: S63-7, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16368261

RESUMO

Echinococcus granulosus, the etiological agent of cystic hydatid disease, exists as a series of strains or genotypes, differing in biological features. Many of the secreted and membrane-bound proteins (S/M) from helminth parasites are involved in the host-parasite interplay and constitute potential targets for diagnosis, anti-parasitic drugs and vaccines. A number of E. granulosus S/M proteins were identified using the signal sequence trap technique. Six out of seven cDNA fragments of these newly identified proteins showed nucleotide and amino acid sequence variation. Inter-strain variation was reported for other characterized S/M proteins as the vaccine target EG95 and the major hydatid cyst fluid antigen, Antigen B (AgB). AgB is highly polymorphic, 101 different sequences related to AgB were reported so far and were grouped in 5 genes (EgB1-EgB5) and one pseudogene (EgB2p) exclusive of G5, G6/G7 genotypes. The significance of AgB polymorphism and possible consequences in diagnostic performance are discussed. The diagnostic value of the new protein variants detected in E. granulosus strains could be determined through standardized inter-laboratory studies as the recently done by the South American Network for Hydatid Serology.


Assuntos
Echinococcus granulosus/metabolismo , Variação Genética , Proteínas de Helminto , Sequência de Aminoácidos , Animais , Sequência de Bases , Membrana Celular/metabolismo , Echinococcus granulosus/genética , Proteínas de Helminto/química , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Lipoproteínas/química , Lipoproteínas/genética , Lipoproteínas/metabolismo , Dados de Sequência Molecular
14.
Int J Parasitol ; 36(1): 123-30, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16229848

RESUMO

The signal sequence trap technique was applied to identify genes coding for secreted and membrane bound proteins from Echinococcus granulosus, the etiologic agent of cystic hydatid disease. An E. granulosus protoscolex cDNA library was constructed in the AP-PST vector such that randomly primed cDNAs were fused with a placental alkaline phosphatase reporter gene lacking its endogenous signal peptide. E. granulosus cDNAs encoding a functional signal peptide were selected by their ability to rescue secretion of alkaline phosphatase by COS-7 cells that had been transfected with the cDNA library. Eighteen positive clones were identified and sequenced. Their deduced amino acid sequences showed significant similarity with amino acid transporters, Krebs cycle intermediates transporters, presenilins and vacuolar protein sorter proteins. Other cDNAs encoded secreted proteins without homologues. Three sequences were transcribed antisense to E. granulosus expressed sequence tags. All the mRNAs were expressed in protoscoleces and adult worms, but some of them were not found in oncospheres. The putative E. granulosus secreted and membrane bound proteins identified are likely to play important roles in the metabolism, development and survival in the host and represent potential targets for diagnosis, drugs and vaccines against E. granulosus.


Assuntos
Echinococcus granulosus/química , Proteínas de Helminto/análise , Proteínas de Membrana/análise , Fosfatase Alcalina/metabolismo , Animais , Células COS , Chlorocebus aethiops , Clonagem Molecular/métodos , DNA Circular/genética , DNA de Helmintos/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Genes de Helmintos/genética , Proteínas de Helminto/genética , Proteínas de Membrana/genética , Dados de Sequência Molecular , Sinais Direcionadores de Proteínas/genética , RNA de Helmintos/genética , RNA Mensageiro/genética , Análise de Sequência de Proteína/métodos
15.
Mol Cell Probes ; 20(1): 5-10, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16226869

RESUMO

The detection of Echinococcus granulosus in dogs is important for epidemiological surveillance and evaluation of cystic hydatic disease control programs. We report the efficacy of two PCR-based methods to detect patent and pre-patent infection in dogs experimentally infected with E. granulosus. The detection is based on amplification of a fragment of a mitochondrial gene (Mit-PCR) and a DNA repetitive element (Rep-PCR) of E. granulosus. We tested the ability of both methods to detect several genotypes of the parasite. Both PCR methods could detect E. granulosus in pre-patent and patent periods, even when microscopical observation of eggs resulted negative in fecal samples. The Mit-PCR produced the same amplification pattern for all the parasite genotypes tested while the amplification patterns with the Rep-PCR differed among groups of strains. Fecal samples collected from dogs of an endemic area were diagnosed with more sensitivity than arecoline hydrobromide purgation. These molecular methods could be applied in the confirmation of coproantigen-positive fecal samples and to verify the success of control programs.


Assuntos
Doenças do Cão , Equinococose/diagnóstico , Echinococcus granulosus/química , Echinococcus granulosus/genética , Genótipo , Animais , DNA de Helmintos/análise , DNA Mitocondrial/análise , Doenças do Cão/diagnóstico , Doenças do Cão/epidemiologia , Doenças do Cão/parasitologia , Cães , Equinococose/epidemiologia , Fezes/parasitologia , Humanos , Contagem de Ovos de Parasitas , Sensibilidade e Especificidade , Zoonoses
16.
Infect Genet Evol ; 2(2): 129-36, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12797989

RESUMO

Mitochondrial cytochrome oxidase subunit 1 (CO1) sequencing, Southern blot of a repetitive DNA element and single strand conformation polymorphism of the 5' non-transcribed region of the cytosolic malate dehydrogenase (MDH) gene were used to determine the extent and distribution of Echinococcus granulosus genetic variation in Argentina. Five distinct strains of E. granulosus were shown to exist in the country. The common sheep, Tasmanian sheep, cattle and camel strains were identified in humans. Unlike the situation found in other countries, where the common sheep strain is the major source of human contamination, the Tasmanian sheep and camel strains produced a significant number of human infections in some regions of Argentina. This is the first report of cattle strain in humans in South America. Goats could be the natural intermediate host of the camel strain, which was not identified in humans from other regions so far. More than one genotype was identified in the same geographic area. These findings may have important consequences for human health and the control of hydatid disease. Within-strain differences were also observed, showing the potential of variation of E. granulosus.


Assuntos
Animais Domésticos/parasitologia , Equinococose/transmissão , Echinococcus/genética , Região 5'-Flanqueadora , Animais , Echinococcus/classificação , Humanos , Malato Desidrogenase/genética , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA