Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Heliyon ; 10(10): e31159, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38779029

RESUMO

Background: Infectious diseases can contribute to substance abuse. Here, a fatal case of borreliosis and substance abuse is reported. This patient had a history of multiple tick bites and increasing multisystem symptoms, yet diagnosis and treatment were delayed. He experimented with multiple substances including phencyclidine (PCP), an N-methyl-d-aspartate (NMDA) receptor antagonist that opposes NMDA agonism caused by Borrelia infection. During PCP withdrawal, he committed one homicide, two assaults, and suicide. Methods: Brain tissue was obtained from autopsy and stained for microglial activation and quinolinic acid (QA). Immunoflouresence (IFA) and fluorescence in situ hybridization (FISH) were used to identify the presence of pathogens in autopsy tissue. Results: Autopsy tissue evaluation demonstrated Borrelia in the pancreas by IFA and heart by IFA and FISH. Activated microglia and QA were found in the brain, indicating neuroinflammation. It is postulated that PCP withdrawal may exacerbate symptoms produced by Borrelia-induced biochemical imbalances in the brain. This combination may have greatly increased his acute homicidal and suicidal risk. Patient databases also demonstrated the risk of homicide or suicide in patients diagnosed with borreliosis and confirmed multiple symptoms in these patients, including chronic pain, anxiety, and anhedonia. Conclusions: Late-stage borreliosis is associated with multiple symptoms that may contribute to an increased risk of substance abuse and addictive disorders. More effective diagnosis and treatment of borreliosis, and attention to substance abuse potential may help reduce associated morbidity and mortality in patients with borreliosis, particularly in endemic areas.

2.
Res Sq ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38562777

RESUMO

Mitochondrial oxidative phosphorylation (OxPhos) powers brain activity1,2, and mitochondrial defects are linked to neurodegenerative and neuropsychiatric disorders3,4, underscoring the need to define the brain's molecular energetic landscape5-10. To bridge the cognitive neuroscience and cell biology scale gap, we developed a physical voxelization approach to partition a frozen human coronal hemisphere section into 703 voxels comparable to neuroimaging resolution (3×3×3 mm). In each cortical and subcortical brain voxel, we profiled mitochondrial phenotypes including OxPhos enzyme activities, mitochondrial DNA and volume density, and mitochondria-specific respiratory capacity. We show that the human brain contains a diversity of mitochondrial phenotypes driven by both topology and cell types. Compared to white matter, grey matter contains >50% more mitochondria. We show that the more abundant grey matter mitochondria also are biochemically optimized for energy transformation, particularly among recently evolved cortical brain regions. Scaling these data to the whole brain, we created a backward linear regression model integrating several neuroimaging modalities11, thereby generating a brain-wide map of mitochondrial distribution and specialization that predicts mitochondrial characteristics in an independent brain region of the same donor brain. This new approach and the resulting MitoBrainMap of mitochondrial phenotypes provide a foundation for exploring the molecular energetic landscape that enables normal brain functions, relating it to neuroimaging data, and defining the subcellular basis for regionalized brain processes relevant to neuropsychiatric and neurodegenerative disorders.

3.
bioRxiv ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38496679

RESUMO

Mitochondrial oxidative phosphorylation (OxPhos) powers brain activity1,2, and mitochondrial defects are linked to neurodegenerative and neuropsychiatric disorders3,4, underscoring the need to define the brain's molecular energetic landscape5-10. To bridge the cognitive neuroscience and cell biology scale gap, we developed a physical voxelization approach to partition a frozen human coronal hemisphere section into 703 voxels comparable to neuroimaging resolution (3×3×3 mm). In each cortical and subcortical brain voxel, we profiled mitochondrial phenotypes including OxPhos enzyme activities, mitochondrial DNA and volume density, and mitochondria-specific respiratory capacity. We show that the human brain contains a diversity of mitochondrial phenotypes driven by both topology and cell types. Compared to white matter, grey matter contains >50% more mitochondria. We show that the more abundant grey matter mitochondria also are biochemically optimized for energy transformation, particularly among recently evolved cortical brain regions. Scaling these data to the whole brain, we created a backward linear regression model integrating several neuroimaging modalities11, thereby generating a brain-wide map of mitochondrial distribution and specialization that predicts mitochondrial characteristics in an independent brain region of the same donor brain. This new approach and the resulting MitoBrainMap of mitochondrial phenotypes provide a foundation for exploring the molecular energetic landscape that enables normal brain functions, relating it to neuroimaging data, and defining the subcellular basis for regionalized brain processes relevant to neuropsychiatric and neurodegenerative disorders.

4.
Mol Psychiatry ; 29(5): 1417-1426, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38278992

RESUMO

Human genetic studies indicate that suicidal ideation and behavior are both heritable. Most studies have examined associations between aberrant gene expression and suicide behavior, but behavior risk is linked to the severity of suicidal ideation. Through a gene network approach, this study investigates how gene co-expression patterns are associated with suicidal ideation and severity using RNA-seq data in peripheral blood from 46 live participants with elevated suicidal ideation and 46 with no ideation. Associations with the presence of suicidal ideation were found within 18 co-expressed modules (p < 0.05), as well as in 3 co-expressed modules associated with suicidal ideation severity (p < 0.05, not explained by severity of depression). Suicidal ideation presence and severity-related gene modules with enrichment of genes involved in defense against microbial infection, inflammation, and adaptive immune response were identified and investigated using RNA-seq data from postmortem brain that revealed gene expression differences with moderate effect sizes in suicide decedents vs. non-suicides in white matter, but not gray matter. Findings support a role of brain and peripheral blood inflammation in suicide risk, showing that suicidal ideation presence and severity are associated with an inflammatory signature detectable in blood and brain, indicating a biological continuity between ideation and suicidal behavior that may underlie a common heritability.


Assuntos
Encéfalo , Ideação Suicida , Suicídio , Transcriptoma , Humanos , Feminino , Masculino , Transcriptoma/genética , Suicídio/psicologia , Adulto , Encéfalo/metabolismo , Pessoa de Meia-Idade , Redes Reguladoras de Genes/genética , Depressão/genética , Depressão/sangue , Inflamação/genética , Inflamação/sangue
5.
Res Sq ; 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37398042

RESUMO

Human genetic studies indicate that suicidal ideation and behavior are both heritable. Most studies have examined associations between aberrant gene expression and suicide behavior, but behavior risk is linked to severity of suicidal ideation. Through a gene network approach, this study investigates how gene co-expression patterns are associated with suicidal ideation and severity using RNA-seq data in peripheral blood from 46 live participants with elevated suicidal ideation and 46 with no ideation. Associations with presence and severity of suicidal ideation were found within 18 and 3 co-expressed modules respectively (p < 0.05), not explained by severity of depression. Suicidal ideation presence and severity-related gene modules with enrichment of genes involved in defense against microbial infection, inflammation, and adaptive immune response were identified, and tested using RNA-seq data from postmortem brain that revealed gene expression differences in suicide decedents vs. non-suicides in white matter, but not gray matter. Findings support a role of brain and peripheral blood inflammation in suicide risk, showing that suicidal ideation presence and severity is associated with an inflammatory signature detectable in blood and brain, indicating a biological continuity between ideation and suicidal behavior that may underlie a common heritability.

6.
Int J Neuropsychopharmacol ; 26(7): 501-512, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37243534

RESUMO

BACKGROUND: The hypothalamic-pituitary-adrenal (HPA) axis is a major stress response system, and excessive HPA responses can impact major depressive disorder and suicide. We examined relationships between reported early-life adversity (ELA), recent-life stress (RLS), suicide, and corticotropin-releasing hormone (CRH), CRH binding protein, FK506-binding protein (FKBP5), glucocorticoid receptor (GR), and brain-derived neurotrophic factor (BDNF) in postmortem human prefrontal cortex (BA9), and anterior cingulate cortex (BA24). METHODS: Thirteen quadruplets, matched for sex, age, and postmortem interval and consisting of suicide decedents and healthy controls, were divided equally into those with and without ELA. ELA, RLS, and psychiatric diagnoses were determined by psychological autopsy. Protein levels were determined by western blots. RESULTS: There were no suicide- or ELA-related differences in CRH, CRH binding protein, GR, or FKBP5 in BA9 or BA24 and no interaction between suicide and ELA (P > .05). For BDNF, there was an interaction between suicide and ELA in BA24; suicides without ELA had less BDNF than controls without ELA, and controls with ELA had less BDNF than controls without ELA. CRH in BA9 and FKBP5 in anterior cingulate cortex correlated negatively with RLS. Least Absolute Shrinkage and Selection Operator logistic regression with cross-validation found combining BDNF, GR, and FKBP5 BA24 levels predicted suicide, but ELA did not contribute. A calculated "suicide risk score" using these measures had 71% sensitivity and 71% specificity. CONCLUSION: A dysregulated HPA axis is related to suicide but not with ELA. RLS was related to select HPA axis proteins in specific brain regions. BDNF appears to be dysregulated in a region-specific way with ELA and suicide.


Assuntos
Experiências Adversas da Infância , Transtorno Depressivo Maior , Suicídio , Humanos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Proteínas de Choque Térmico/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Receptores de Glucocorticoides/metabolismo , Estresse Psicológico/metabolismo
7.
Nature ; 616(7955): 113-122, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36922587

RESUMO

Emerging spatial technologies, including spatial transcriptomics and spatial epigenomics, are becoming powerful tools for profiling of cellular states in the tissue context1-5. However, current methods capture only one layer of omics information at a time, precluding the possibility of examining the mechanistic relationship across the central dogma of molecular biology. Here, we present two technologies for spatially resolved, genome-wide, joint profiling of the epigenome and transcriptome by cosequencing chromatin accessibility and gene expression, or histone modifications (H3K27me3, H3K27ac or H3K4me3) and gene expression on the same tissue section at near-single-cell resolution. These were applied to embryonic and juvenile mouse brain, as well as adult human brain, to map how epigenetic mechanisms control transcriptional phenotype and cell dynamics in tissue. Although highly concordant tissue features were identified by either spatial epigenome or spatial transcriptome we also observed distinct patterns, suggesting their differential roles in defining cell states. Linking epigenome to transcriptome pixel by pixel allows the uncovering of new insights in spatial epigenetic priming, differentiation and gene regulation within the tissue architecture. These technologies are of great interest in life science and biomedical research.


Assuntos
Cromatina , Epigenoma , Mamíferos , Transcriptoma , Animais , Humanos , Camundongos , Cromatina/genética , Cromatina/metabolismo , Epigênese Genética , Epigenômica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Mamíferos/genética , Histonas/química , Histonas/metabolismo , Análise de Célula Única , Especificidade de Órgãos , Encéfalo/embriologia , Encéfalo/metabolismo , Envelhecimento/genética
8.
Nature ; 609(7926): 375-383, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35978191

RESUMO

Cellular function in tissue is dependent on the local environment, requiring new methods for spatial mapping of biomolecules and cells in the tissue context1. The emergence of spatial transcriptomics has enabled genome-scale gene expression mapping2-5, but the ability to capture spatial epigenetic information of tissue at the cellular level and genome scale is lacking. Here we describe a method for spatially resolved chromatin accessibility profiling of tissue sections using next-generation sequencing (spatial-ATAC-seq) by combining in situ Tn5 transposition chemistry6 and microfluidic deterministic barcoding5. Profiling mouse embryos using spatial-ATAC-seq delineated tissue-region-specific epigenetic landscapes and identified gene regulators involved in the development of the central nervous system. Mapping the accessible genome in the mouse and human brain revealed the intricate arealization of brain regions. Applying spatial-ATAC-seq to tonsil tissue resolved the spatially distinct organization of immune cell types and states in lymphoid follicles and extrafollicular zones. This technology progresses spatial biology by enabling spatially resolved chromatin accessibility profiling to improve our understanding of cell identity, cell state and cell fate decision in relation to epigenetic underpinnings in development and disease.


Assuntos
Montagem e Desmontagem da Cromatina , Sequenciamento de Cromatina por Imunoprecipitação , Cromatina , Animais , Encéfalo/metabolismo , Diferenciação Celular , Linhagem da Célula , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina/genética , Sequenciamento de Cromatina por Imunoprecipitação/métodos , Epigenômica , Perfilação da Expressão Gênica , Genoma , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Camundongos , Tonsila Palatina/citologia , Tonsila Palatina/imunologia
9.
Brain ; 145(12): 4193-4201, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36004663

RESUMO

Infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is associated with acute and postacute cognitive and neuropsychiatric symptoms including impaired memory, concentration, attention, sleep and affect. Mechanisms underlying these brain symptoms remain understudied. Here we report that SARS-CoV-2-infected hamsters exhibit a lack of viral neuroinvasion despite aberrant blood-brain barrier permeability. Hamsters and patients deceased from coronavirus disease 2019 (COVID-19) also exhibit microglial activation and expression of interleukin (IL)-1ß and IL-6, especially within the hippocampus and the medulla oblongata, when compared with non-COVID control hamsters and humans who died from other infections, cardiovascular disease, uraemia or trauma. In the hippocampal dentate gyrus of both COVID-19 hamsters and humans, we observed fewer neuroblasts and immature neurons. Protracted inflammation, blood-brain barrier disruption and microglia activation may result in altered neurotransmission, neurogenesis and neuronal damage, explaining neuropsychiatric presentations of COVID-19. The involvement of the hippocampus may explain learning, memory and executive dysfunctions in COVID-19 patients.


Assuntos
COVID-19 , Humanos , Citocinas , SARS-CoV-2 , Hipocampo , Neurogênese/fisiologia
10.
Nat Neurosci ; 25(4): 493-503, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35383330

RESUMO

The hippocampus is the most common seizure focus in people. In the hippocampus, aberrant neurogenesis plays a critical role in the initiation and progression of epilepsy in rodent models, but it is unknown whether this also holds true in humans. To address this question, we used immunofluorescence on control healthy hippocampus and surgical resections from mesial temporal lobe epilepsy (MTLE), plus neural stem-cell cultures and multi-electrode recordings of ex vivo hippocampal slices. We found that a longer duration of epilepsy is associated with a sharp decline in neuronal production and persistent numbers in astrogenesis. Further, immature neurons in MTLE are mostly inactive, and are not observed in cases with local epileptiform-like activity. However, immature astroglia are present in every MTLE case and their location and activity are dependent on epileptiform-like activity. Immature astroglia, rather than newborn neurons, therefore represent a potential target to continually modulate adult human neuronal hyperactivity.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Hipocampo , Humanos , Imageamento por Ressonância Magnética , Neurogênese , Convulsões
11.
Res Sq ; 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34729556

RESUMO

Infection with the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is associated with onset of neurological and psychiatric symptoms during and after the acute phase of illness 1-4 . Acute SARS-CoV-2 disease (COVID-19) presents with deficits of memory, attention, movement coordination, and mood. The mechanisms of these central nervous system symptoms remain largely unknown.In an established hamster model of intranasal infection with SARS-CoV-2 5 , and patients deceased from COVID-19, we report a lack of viral neuroinvasion despite aberrant BBB permeability, microglial activation, and brain expression of interleukin (IL)-1ß and IL-6, especially within the hippocampus and the inferior olivary nucleus of the medulla, when compared with non-COVID control hamsters and humans who died from other infections, cardiovascular disease, uremia or trauma. In the hippocampus dentate gyrus of both COVID-19 hamsters and humans, fewer cells expressed doublecortin, a marker of neuroblasts and immature neurons.Despite absence of viral neurotropism, we find SARS-CoV-2-induced inflammation, and hypoxia in humans, affect brain regions essential for fine motor function, learning, memory, and emotional responses, and result in loss of adult hippocampal neurogenesis. Neuroinflammation could affect cognition and behaviour via disruption of brain vasculature integrity, neurotransmission, and neurogenesis, acute effects that may persist in COVID-19 survivors with long-COVID symptoms.

12.
Front Neurol ; 12: 628045, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34040573

RESUMO

The complex etiology of neurodegenerative disease has prompted studies on multiple mechanisms including genetic predisposition, brain biochemistry, immunological responses, and microbial insult. In particular, Lyme disease is often associated with neurocognitive impairment with variable manifestations between patients. We sought to develop methods to reliably detect Borrelia burgdorferi, the spirochete bacteria responsible for Lyme disease, in autopsy specimens of patients with a history of neurocognitive disease. In this report, we describe the use of multiple molecular detection techniques for this pathogen and its application to a case study of a Lyme disease patient. The patient had a history of Lyme disease, was treated with antibiotics, and years later developed chronic symptoms including dementia. The patient's pathology and clinical case description was consistent with Lewy body dementia. B. burgdorferi was identified by PCR in several CNS tissues and by immunofluorescent staining in the spinal cord. These studies offer proof of the principle that persistent infection with the Lyme disease spirochete may have lingering consequences on the CNS.

13.
J Proteomics ; 235: 104117, 2021 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-33453434

RESUMO

The proteomics of formalin-fixed, paraffin-embedded (FFPE) samples has advanced significantly during the last two decades, but there are many protocols and few studies comparing them directly. There is no consensus on the most effective protocol for shotgun proteomic analysis. We compared the in-solution digestion with RapiGest and Filter Aided Sample Preparation (FASP) of FFPE prostate tissues stored 7 years and mirroring fresh frozen samples, using two label-free data-independent LC-MS/MS acquisitions. RapiGest identified more proteins than FASP, with almost identical numbers of proteins from fresh and FFPE tissues and 69% overlap, good preservation of high-MW proteins, no bias regarding isoelectric point, and greater technical reproducibility. On the other hand, FASP yielded 20% fewer protein identifications in FFPE than in fresh tissue, with 64-69% overlap, depletion of proteins >70 kDa, lower efficiency in acidic and neutral range, and lower technical reproducibility. Both protocols showed highly similar subcellular compartments distribution, highly similar percentages of extracted unique peptides from FFPE and fresh tissues and high positive correlation between the absolute quantitation values of fresh and FFPE proteins. In conclusion, RapiGest extraction of FFPE tissues delivers a proteome that closely resembles the fresh frozen proteome and should be preferred over FASP in biomarker and quantification studies. SIGNIFICANCE: Here we analyzed the performance of two sample preparation methods for shotgun proteomic analysis of FFPE tissues to give a comprehensive overview of the obtained proteomes and the resemblance to its matching fresh frozen counterparts. These findings give us better understanding towards competent proteomics analysis of FFPE tissues. It is hoped that it will encourage further assessments of available protocols before establishing the most effective protocol for shotgun proteomic FFPE tissue analysis.


Assuntos
Formaldeído , Proteômica , Cromatografia Líquida , Humanos , Masculino , Inclusão em Parafina , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem , Fixação de Tecidos
14.
J Neurosci Methods ; 326: 108373, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31377177

RESUMO

BACKGROUND: Standard segmentation of high-contrast electron micrographs (EM) identifies myelin accurately but does not translate easily into measurements of individual axons and their myelin, even in cross-sections of parallel fibers. We describe automated segmentation and measurement of each myelinated axon and its sheath in EMs of arbitrarily oriented human white matter from autopsies. NEW METHODS: Preliminary segmentation of myelin, axons and background by machine learning, using selected filters, precedes automated correction of systematic errors. Final segmentation is done by a deep neural network (DNN). Automated measurement of each putative fiber rejects measures encountering pre-defined artifacts and excludes fibers failing to satisfy pre-defined conditions. RESULTS: Improved segmentation of three sets of 30 annotated images each (two sets from human prefrontal white matter and one from human optic nerve) is achieved with a DNN trained only with a subset of the first set from prefrontal white matter. Total number of myelinated axons identified by the DNN differed from expert segmentation by 0.2%, 2.9%, and -5.1%, respectively. G-ratios differed by 2.96%, 0.74% and 2.83%. Intraclass correlation coefficients between DNN and annotated segmentation were mostly >0.9, indicating nearly interchangeable performance. COMPARISON WITH EXISTING METHOD(S): Measurement-oriented studies of arbitrarily oriented fibers from central white matter are rare. Published methods are typically applied to cross-sections of fascicles and measure aggregated areas of myelin sheaths and axons, allowing estimation only of average g-ratio. CONCLUSIONS: Automated segmentation and measurement of axons and myelin is complex. We report a feasible approach that has so far proven comparable to manual segmentation.


Assuntos
Axônios , Cérebro/diagnóstico por imagem , Aprendizado Profundo , Interpretação de Imagem Assistida por Computador/métodos , Microscopia Eletrônica/métodos , Bainha de Mielina , Substância Branca/diagnóstico por imagem , Autopsia , Humanos , Fluxo de Trabalho
15.
Biol Psychiatry ; 85(10): 850-862, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30819514

RESUMO

BACKGROUND: Early life adversity (ELA) increases major depressive disorder (MDD) and suicide risk and potentially affects dentate gyrus (DG) plasticity. We reported smaller DG and fewer granular neurons (GNs) in MDD. ELA effects on DG plasticity in suicide decedents with MDD (MDDSui) and resilient subjects (ELA history without MDD or suicide) are unknown. METHODS: We quantified neural progenitor cells (NPCs), GNs, glia, and DG volume in whole hippocampus postmortem in four groups of drug-free, neuropathology-free subjects (N = 52 total): psychological autopsy-defined MDDSui and control subjects with and without ELA (before 15 years of age). RESULTS: ELA was associated with larger DG (p < .0001) and trending fewer NPCs (p = .0190) only in control subjects in whole DG, showing no effect on NPCs and DG volume in MDDSui. ELA exposure was associated with more GNs (p = .0003) and a trend for more glia (p = .0160) in whole DG in MDDSui and control subjects. MDDSui without ELA had fewer anterior and mid DG GNs (p < .0001), fewer anterior DG NPCs (p < .0001), and smaller whole DG volume (p = .0005) compared with control subjects without ELA. In MDDSui, lower Global Assessment Scale score correlated with fewer GNs and smaller DG. CONCLUSIONS: Resilience to ELA involves a larger DG, perhaps related to more neurogenesis depleting NPCs, and because mature GNs and glia numbers do not differ in the resilient group, perhaps there are effects on process extension and synaptic load that can be examined in future studies. In MDDSui without ELA, smaller DG volume, with fewer GNs and NPCs, suggests less neurogenesis and/or more apoptosis and dendrite changes.


Assuntos
Experiências Adversas da Infância , Giro Denteado/patologia , Transtorno Depressivo Maior/patologia , Transtorno Depressivo Maior/psicologia , Neurônios/patologia , Resiliência Psicológica , Suicídio/psicologia , Adolescente , Adulto , Transtorno Depressivo Maior/complicações , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Células-Tronco Neurais/patologia , Neuroglia/patologia , Adulto Jovem
16.
Neuroscience ; 420: 97-111, 2019 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-30610939

RESUMO

Abnormalities of SNAP25 (synaptosome-associated protein 25) amount and protein-protein interactions occur in schizophrenia, and may contribute to abnormalities of neurotransmitter release in patients. However, presynaptic terminal function depends on multiple subcellular mechanisms, including energy provided by mitochondria. To explore the SNAP25 interactome in schizophrenia, we immunoprecipitated SNAP25 along with interacting proteins from the ventromedial caudate of 15 cases of schizophrenia and 13 controls. Proteins were identified with mass spectrometry-based proteomics. As well as 15 SNARE- (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) associated proteins, we identified 17 mitochondria-associated and four other proteins. The mitochondrial small GTPase ARF1 (ADP-ribosylation factor 1) was identified in eight schizophrenia SNAP25 immunoprecipitates and none from controls (P = 0.004). Although the ARF1-SNAP25 interaction may be increased, immunoblotting demonstrated 21% lower ARF1-21 (21 kiloDaltons) in schizophrenia samples (P = 0.04). In contrast, the mitochondrial protein UQCRC1 (ubiquinol-cytochrome c reductase core protein 1) did not differ. Lower ARF1-21 levels were associated with the previously reported increased SNAP25-syntaxin interaction in schizophrenia (r = -0.39, P = 0.04). Additional immunoprecipitation studies confirmed the ARF1-21-SNAP25 interaction, independent of UQCRC1. Both ARF1 and SNAP25 were localized to synaptosomes. Confocal microscopy demonstrated co-localization of ARF1 and SNAP25, and further suggested fivefold enrichment of ARF1 in synaptosomes containing an excitatory marker (vesicular glutamate transporter) compared with synaptosomes containing an inhibitory marker (vesicular GABA transporter). The present findings suggest an association between abnormalities of SNARE proteins involved with vesicular neurotransmission and the mitochondrial protein ARF1 that may contribute to the pathophysiology of schizophrenia.


Assuntos
Fator 1 de Ribosilação do ADP/metabolismo , Núcleo Caudado/metabolismo , Esquizofrenia/metabolismo , Esquizofrenia/fisiopatologia , Proteína 25 Associada a Sinaptossoma/metabolismo , Adulto , Idoso , Núcleo Caudado/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
17.
J Neuropathol Exp Neurol ; 78(1): 15-30, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30496451

RESUMO

Inflammatory processes may contribute to psychiatric disorders and suicide. Earlier, we reported greater densities of perivascular phagocytes in dorsal prefrontal white matter (DPFWM) in suicide than in non-suicide deaths. To distinguish between greater vascularity and greater coverage of vessels by perivascular phagocytes, and to determine whether the excess of perivascular phagocytes is derived from microglia or from non-parenchymal immune cells, we made stereological estimates of vascular surface area density (AVTOTAL) by staining for glucose transporter Glut-1, and the fraction of vascular surface area (AF) immunoreactive (IR) for CD163 (CD163 AF) in dorsal and ventral prefrontal white and gray matter. Manner of death or psychiatric diagnosis showed no association with CD163 AF in any region. Suicide was associated with a lower AVTOTAL compared with non-suicides in DPFWM (p = 0.018) but not with AVTOTAL in the 3 other regions of interest. Thus, the earlier observation of increased density of perivascular phagocytes in DPFWM after suicide cannot be attributed to infiltration by peripheral monocytes or to increased vascularity. Greater AVTOTAL ventrally than dorsally (p = 0.002) was unique to suicide and white matter.


Assuntos
Substância Cinzenta/patologia , Fagócitos/patologia , Córtex Pré-Frontal/patologia , Suicídio , Substância Branca/patologia , Adulto , Vasos Sanguíneos/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
18.
Neuroscience ; 420: 112-128, 2019 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-30579835

RESUMO

Recent studies associated schizophrenia with enhanced functionality of the presynaptic SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex. Altered degradation pathways of the three core SNARE proteins: synaptosomal-associated protein 25 (SNAP25), syntaxin-1 and vesicle-associated membrane protein (VAMP) could contribute to enhanced complex function. To investigate these pathways, we first identified a 15-kDa SNAP25 fragment (f-S25) in human and rat brains, highly enriched in synaptosomal extractions, and mainly attached to cytosolic membranes with low hydrophobicity. The presence of f-S25 is consistent with reports of calpain-mediated SNAP25 cleavage. Co-immunoprecipitation assays showed that f-S25 retains the ability to bind syntaxin-1, which might prevent VAMP and/or Munc18-1 assembly into the complex. Quantitative analyses in postmortem human orbitofrontal cortex (OFC) revealed that schizophrenia (n = 35), but not major depression (n = 15), is associated with lower amounts of f-S25 (-37%, P = 0.027), and greater SNARE protein-protein interactions (35%, P < 0.001), compared with healthy matched controls (n = 28). Enhanced SNARE complex formation was strongly correlated with lower SNAP25 fragmentation rates (R = 0.563, P < 0.001). Statistical mediation analyses supported the hypothesis that reduced f-S25 density could upregulate SNARE fusion events in schizophrenia. Cortical calpain activity in schizophrenia did not differ from controls. f-S25 levels did not correlate with total calpain activity, indicating that if present, schizophrenia-related calpain dysfunction might occur locally at the presynaptic terminals. Overall, the present findings suggest the existence of an endogenous SNARE complex inhibitor related to SNAP25 proteolysis, associated with enhanced SNARE activity in schizophrenia.


Assuntos
Encéfalo/metabolismo , Fragmentos de Peptídeos/metabolismo , Esquizofrenia/metabolismo , Proteína 25 Associada a Sinaptossoma/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Autopsia , Humanos , Masculino , Pessoa de Meia-Idade , Proteólise , Ratos , Ratos Sprague-Dawley , Proteínas SNARE/metabolismo
20.
Cell Rep ; 23(11): 3183-3196, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29898391

RESUMO

Stress exposure is associated with the pathogenesis of psychiatric disorders, including post-traumatic stress disorder (PTSD) and major depressive disorder (MDD). Here, we show in rodents that chronic stress exposure rapidly and transiently elevates hippocampal expression of Kruppel-like factor 9 (Klf9). Inducible genetic silencing of Klf9 expression in excitatory forebrain neurons in adulthood prior to, but not after, onset of stressor prevented chronic restraint stress (CRS)-induced potentiation of contextual fear acquisition in female mice and chronic corticosterone (CORT) exposure-induced fear generalization in male mice. Klf9 silencing prevented chronic CORT and CRS induced enlargement of dendritic spines in the ventral hippocampus of male and female mice, respectively. KLF9 mRNA density was increased in the anterior dentate gyrus of women, but not men, with more severe recent stressful life events and increased mortality. Thus, Klf9 functions as a stress-responsive transcription factor that mediates circuit and behavioral resilience in a sex-specific manner.


Assuntos
Espinhas Dendríticas/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Neurônios/metabolismo , Estresse Psicológico , Animais , Corticosterona/farmacologia , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/patologia , Giro Denteado/metabolismo , Feminino , Inativação Gênica , Hipocampo/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/patologia , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA