Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Chem Inf Model ; 61(9): 4701-4719, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34450011

RESUMO

Guanosine triphosphate (GTP) cyclohydrolase I (GCH1) catalyzes the conversion of GTP into dihydroneopterin triphosphate (DHNP). DHNP is the first intermediate of the folate de novo biosynthesis pathway in prokaryotic and lower eukaryotic microorganisms and the tetrahydrobiopterin (BH4) biosynthesis pathway in higher eukaryotes. The de novo folate biosynthesis provides essential cofactors for DNA replication, cell division, and synthesis of key amino acids in rapidly replicating pathogen cells, such as Plasmodium falciparum (P. falciparum), a causative agent of malaria. In eukaryotes, the product of the BH4 biosynthesis pathway is essential for the production of nitric oxide and several neurotransmitter precursors. An increased copy number of the malaria parasite P. falciparum GCH1 gene has been reported to influence antimalarial antifolate drug resistance evolution, whereas mutations in the human GCH1 are associated with neuropathic and inflammatory pain disorders. Thus, GCH1 stands as an important and attractive drug target for developing therapeutics. The GCH1 intrinsic dynamics that modulate its activity remains unclear, and key sites that exert allosteric effects across the structure are yet to be elucidated. This study employed the anisotropic network model to analyze the intrinsic motions of the GCH1 structure alone and in complex with its regulatory partner protein. We showed that the GCH1 tunnel-gating mechanism is regulated by a global shear motion and an outward expansion of the central five-helix bundle. We further identified hotspot residues within sites of structural significance for the GCH1 intrinsic allosteric modulation. The obtained results can provide a solid starting point to design novel antineuropathic treatments for humans and novel antimalarial drugs against the malaria parasite P. falciparum GCH1 enzyme.


Assuntos
Antimaláricos , Malária Falciparum , Preparações Farmacêuticas , Antimaláricos/farmacologia , GTP Cicloidrolase/genética , Humanos , Plasmodium falciparum
2.
Front Mol Biosci ; 7: 575196, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33102524

RESUMO

The de novo folate synthesis pathway is a well-established drug target in the treatment of many infectious diseases. Antimalarial antifolate drugs have proven to be effective against malaria, however, rapid drug resistance has emerged on the two primary targeted enzymes: dihydrofolate reductase and dihydroptoreate synthase. The need to identify alternative antifolate drugs and novel metabolic targets is of imminent importance. The 6-pyruvol tetrahydropterin synthase (PTPS) enzyme belongs to the tunneling fold protein superfamily which is characterized by a distinct central tunnel/cavity. The enzyme catalyzes the second reaction step of the parasite's de novo folate synthesis pathway and is responsible for the conversion of 7,8-dihydroneopterin to 6-pyruvoyl-tetrahydropterin. In this study, we examine the structural dynamics of Plasmodium falciparum PTPS using the anisotropic network model, to elucidate the collective motions that drive the function of the enzyme and identify potential sites for allosteric modulation of its binding properties. Based on our modal analysis, we identified key sites in the N-terminal domains and central helices which control the accessibility to the active site. Notably, the N-terminal domains were shown to regulate the open-to-closed transition of the tunnel, via a distinctive wringing motion that deformed the core of the protein. We, further, combined the dynamic analysis with motif discovery which revealed highly conserved motifs that are unique to the Plasmodium species and are located in the N-terminal domains and central helices. This provides essential structural information for the efficient design of drugs such as allosteric modulators that would have high specificity and low toxicity as they do not target the PTPS active site that is highly conserved in humans.

3.
Biophys J ; 114(4): 822-838, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29490244

RESUMO

Enterovirus 71 can be a severe pathogen in small children and immunocompromised adults. Virus uncoating is a critical step in the infection of the host cell; however, the mechanisms that control this process remain poorly understood. We applied normal mode analysis and perturbation response scanning to several complexes of the virus capsid and present a coarse-graining approach to analyze the full capsid. We show that our method offers an alternative to expressing the system as a set of rigid blocks and accounts for the interconnection between nodes within each subunit and protein interfaces across the capsid. In our coarse-grained approach, the modes associated with capsid expansion are captured in the first three nondegenerate modes and correspond to the changes observed in structural studies of the virus. We show that the resolution of the analysis may be modified without losing information on the global motions leading to uncoating. Perturbation response scanning revealed that a protomer cannot serve as a functional unit to explain deformations of the capsid. Instead, we define a pentamer as the minimum functional unit to investigate changes within the capsid. From the modal analysis and perturbation response scanning, we locate a hotspot region surrounding the fivefold axis. The range of the effect of these single, hotspot residues extend to 140 Å. The perturbation of internal capsid residues in this region displayed greatest propensity to capsid expansion, thus indicating the significant role that the RNA genome may play in triggering uncoating.


Assuntos
Capsídeo/química , Capsídeo/fisiologia , Enterovirus Humano A/química , Enterovirus Humano A/fisiologia , Desenvelopamento do Vírus , Humanos , Modelos Moleculares , Conformação Molecular
4.
DNA Repair (Amst) ; 9(5): 517-25, 2010 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-20189471

RESUMO

The repair of DNA damage by homologous recombination (HR) is a key pathway for the maintenance of genetic stability in mammalian cells, especially during and following DNA replication. The central HR protein is RAD51, which ensures high fidelity DNA repair by facilitating strand exchange between damaged and undamaged homologous DNA segments. Several RAD51-like proteins, including XRCC2, appear to help with this process, but their roles are not well understood. Here we show that XRCC2 is highly conserved and that most substantial truncations of the protein destroy its ability to function. XRCC2 and its partner protein RAD51L3 are found to interact with RAD51 in the 2-hybrid system, and XRCC2 is shown to be important but not essential for the accumulation of RAD51 at the sites of DNA damage. We visualize the localization of XRCC2 protein at the same sites of DNA damage for the first time using specialized irradiation conditions. Our data indicate that an important function of XRCC2 is to enhance the activity of RAD51, so that the loss of XRCC2 results in a severe delay in the early response of RAD51 to DNA damage.


Assuntos
Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Rad51 Recombinase/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Células CHO , Linhagem Celular , Clonagem Molecular , Sequência Conservada , Cricetinae , Cricetulus , Dano ao DNA , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Deleção de Genes , Humanos , Dados de Sequência Molecular , Transporte Proteico , Sítios de Splice de RNA/genética , Análise de Sequência de DNA , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA