Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38695909

RESUMO

Lignans are biologically active compounds widely distributed, recognized, and identified in seeds, fruits, and vegetables. Lignans have several intriguing bioactivities, including anti-inflammatory, antioxidant, and anticancer activities. Nrf2 controls the expression of many cytoprotective genes. Activation of Nrf2 is a promising therapeutic approach for treating and preventing diseases resulting from oxidative injury and inflammation. Lignans have been demonstrated to stimulate Nrf2 signaling in a variety of in vitro and experimental animal models. The review summarizes the findings of fourteen lignans (Schisandrin A, Schisandrin B, Schisandrian C, Magnolol, Honokiol, Sesamin, Sesamol, Sauchinone, Pinoresinol, Phyllanthin, Nectandrin B, Isoeucommin A, Arctigenin, Lariciresinol) as antioxidative and anti-inflammatory agents, affirming how Nrf2 activation affects their pharmacological effects. Therefore, lignans may offer therapeutic candidates for the treatment and prevention of various diseases and may contribute to the development of effective Nrf2 modulators.

2.
RSC Adv ; 14(20): 14185-14193, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38690113

RESUMO

Chemical investigations of the sea urchin Clypeaster humilis has led to separation of twelve compounds including one new sulfonic acid derivative (7R) tridec-1-en-7-yl hydrogen sulphate (1), first isolated from natural source, pyridine-3-yl methane sulfonate (2), and first isolated from marine organisms, boldine (12), in addition to nine known compounds (3-11), which were isolated for the first time from the genus Clypeaster. Their structures were elucidated based on spectroscopic analyses (1D and 2D NMR), HR-ESI-MS as well as comparison with the previously reported data. The antiviral activity of the crude extract and sulphated compounds were evaluated using MTT colorimetric assay against Coxsackie B4 virus. The crude extract and compound 1 showed very potent antiviral activity with a percentage of inhibition equal to 89.7 ± 0.53% and 86.1 ± 0.92%, respectively. Results of the molecular docking analysis of the isolated compounds within Coxsackie Virus B4 (COX-B4) X-ray crystal structure and quantum chemical calculation for three sulphated compounds are in a consistent adaptation with the in vitro antiviral results. The pharmacokinetic properties (ADME) of isolated compounds were determined.

3.
Fitoterapia ; 175: 105975, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38685509

RESUMO

Baccharin is one of the major compounds found in Brazilian green propolis and its botanical source, Baccharis dracunculifolia. Considering the biological effects of propolis and B. dracunculifolia, this study aims to evaluate the analgesic and anti-inflammatory potential of baccharin. The neurodepressor potential was performed by the open field test, analgesia by mechanical stimulation with Dynamic Plantar Aesthesiometer, and by thermal stimulation with Hargreaves apparatus. In addition, the anti-inflammatory potential was achieved by the paw edema assay, histopathological evaluation, and NF-kB expression. Doses of 2.5, 5, and 10 mg/kg of baccharin were evaluated. After euthanasia, plantar tissue was collected and prepared for histology. As a result, analgesic activity was observed at a dose of 10 mg/kg of baccharin in thermal stimulation under an inflammatory process and anti-inflammatory potential at a dose of 5 mg/kg of baccharin from the second hour in the paw edema test. A decrease in cellular infiltrate and down-modulation of NF-kB, besides the reduction of edema in the histopathology was observed. There was no evidence of kidney and liver toxicity and neurodepressive potential at the doses tested. Thus, baccharin has a promising anti-inflammatory effect possibly associated with antiedematogenic activity by inhibiting mediators such as prostaglandins, inhibiting the migration of polymorphonuclear cells, and modulating NF-kB expression.

4.
Molecules ; 29(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38398586

RESUMO

Atraphaxis pyrifolia is a native species of Central Asia, known for curing several disorders. The species has little knowledges about its chemical composition and any information about its morphological characteristics despite its importance in traditional Asian medicine. This is one of the first approaches to the phytochemical and morphological characterization of this species. Micro-morphology was performed on the stem, and leaf parts of this plant to profile the morpho-anatomical characters using brightfield, fluorescence, polarized and scanning electron microscopy. Leaves were extracted with hexane and methanol. The hexane extract was analyzed using GC-MS analysis revealing the major presence of γ-sitosterol and nonacosane. The methanolic extract was submitted to Vacuum Liquid Chromatography and Sephadex LH-20. HPTLC, HR-ESI-MS and NMR techniques were used to identify the main compounds. Four glycosylated flavonoids were isolated: 8-O-acetyl-7-O-methyl-3-O-α-l-rhamnopyranosylgossypetin (Compound 1), and 7-O-methyl-3-O-α-l-rhamnopyranosylgossypetin (Compound 3), and two other compounds reported for the first time in the literature (Compounds 2 and 4). The findings presented herein furnish pertinent information essential for the identification and authentication of this medicinal plant. Such insights are invaluable for facilitating robust quality control measures and serve as a foundational framework for subsequent endeavours in metabolic, pharmacological, and taxonomical analyses.


Assuntos
Hexanos , Extratos Vegetais , Extratos Vegetais/química , Cazaquistão , Compostos Fitoquímicos/farmacologia , Metanol
5.
Fundam Clin Pharmacol ; 38(2): 252-261, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37735998

RESUMO

BACKGROUND: Kaurenol, a diterpene alcohol found in Copaifera langsdorffii Desf. (known as "copaiba"), is historically used in traditional medicine for inflammatory conditions. OBJECTIVES: This study aims to comprehensively assess the potential anti-inflammatory and antinociceptive properties of kaurenol. METHODS: To this end, the following experiments were conducted to evaluated toxicity: locomotor performance and acute toxicity; nociception: acetic acid-induced writhing and formalin-induced antinociception; and anti-inflammatory activity: carrageenan and dextran-induced paw edema at 10, 20, and 40 mg/kg, and measurement of nitric oxide (NO), tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), and interleukin-10 (IL-10) in macrophages at 1, 3, and 9 µg/ml. RESULTS: Kaurenol did not show significant locomotor changes, acute toxicity, and central analgesic activity in the first phase of formalin test at dosages tested. Kaurenol showed 53%, 64%, 64%, and 58% of inhibition in the acetic acid-induced writhing, second phase of formalin test, carrageenan and dextran-induced paw edema, respectively. CONCLUSION: The anti-inflammatory activity was associated with the regulation of NO release and probably with the regulation of mediators, such as serotonin and prostaglandin in vascular permeability, as well as by being associated with the regulation of IL-6 and IL-10. Kaurenol display anti-inflammatory activity but has no analgesic activity.


Assuntos
Diterpenos , Interleucina-10 , Humanos , Carragenina , Interleucina-6 , Dextranos/efeitos adversos , Dor/induzido quimicamente , Dor/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Analgésicos/toxicidade , Diterpenos/efeitos adversos , Extratos Vegetais/farmacologia , Ácido Acético/efeitos adversos , Edema/induzido quimicamente , Edema/tratamento farmacológico
6.
Biomedicines ; 11(12)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38137372

RESUMO

The study of medicinal plants is important, as they are the natural reserve of potent biologically active compounds. With wide use in traditional medicine and the inclusion of several species (as parts and as a whole plant) in pharmacopeia, species from the genus Salvia L. are known for the broad spectrum of their biological activities. Studies suggest that these plants possess antioxidant, anti-inflammatory, antinociceptive, anticancer, antimicrobial, antidiabetic, antiangiogenic, hepatoprotective, cognitive and memory-enhancing effects. Phenolic acids, terpenoids and flavonoids are important phytochemicals, which are primarily responsible for the medicinal activity of Salvia L. This review collects and summarizes currently available data on the pharmacological properties of sage, outlining its principal physiologically active components, and it explores the molecular mechanism of their biological activity. Particular attention was given to the species commonly found in Kazakhstan, especially to Salvia trautvetteri Regel, which is native to this country.

7.
Plants (Basel) ; 12(18)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37765460

RESUMO

Rosa species are widely used in folk medicine in different countries of Asia and Europe, but not all species are studied in-depth. For instance, Rosa beggeriana Schrenk, a plant which grows in Central Asia, Iran, and some parts of China, is little described in articles. Column and thin-layer chromatography methods were used to isolate biologically active substances. From a study of fruits and leaves of Rosa beggeriana Schrenk, a large number of compounds were identified, seven of which were isolated: 3ß,23-dihydroxyurs-12-ene (1), ß-sitosterol (2), betulin (3), (+)-catechin (4), lupeol (5), ethyl linoleate (6), and ethyl linolenoate (7). Their structures were elucidated by 1H, DEPT and 13C NMR spectroscopy, mass spectrometry, and GC-MS (gas chromatography-mass spectrometry). The study also identified the structures of organic compounds, including volatile esters and acids. Consequently, comprehensive data were acquired concerning the chemical constitution of said botanical specimen.

8.
Front Microbiol ; 14: 1228869, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37680531

RESUMO

In the realm of applied phycology, algal physiology, and biochemistry publications, the absence of proper identification and documentation of microalgae is a common concern. This poses a significant challenge for non-specialists who struggle to identify numerous eukaryotic microalgae. However, a promising solution lies in employing an appropriate DNA barcoding technique and establishing comprehensive databases of reference sequences. To address this issue, we conducted a study focusing on the molecular characterization and strain identification of Tetraselmis and Chlorella species, utilizing the internal transcribed spacer (ITS) barcode approach. By analyzing the full nuclear ITS region through the Sanger sequencing approach, we obtained ITS barcodes that were subsequently compared with other ITS sequences of various Tetraselmis and Chlorella species. To ensure the reliability of our identification procedure, we conducted a meticulous comparison of the DNA alignment, constructed a phylogenetic tree, and determined the percentage of identical nucleotides. The findings of our study reveal the significant value of the ITS genomic region as a tool for distinguishing and identifying morphologically similar chlorophyta. Moreover, our results demonstrate that both the ITS1 and ITS2 regions are capable of effectively discriminating isolates from one another; however, ITS2 is preferred due to its greater intraspecific variation. These results underscore the indispensability of employing ITS barcoding in microalgae identification, highlighting the limitations of relying solely on morphological characterization.

9.
Pharmaceuticals (Basel) ; 16(8)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37631014

RESUMO

Breast cancer is a deadly disease that affects countless women worldwide. The most conventional treatments for breast cancer, such as the administration of anticancer medications such as letrozole (LTZ), pose significant barriers due to the non-selective delivery and low bioavailability of cytotoxic drugs leading to serious adverse effects and multidrug resistance (MDR). Addressing these obstacles requires an innovative approach, and we propose a combined strategy that synergistically incorporates LTZ with berberine (BBR) into stabilised AuNPs coated with ascorbic acid (AA), known as LTZ-BBR@AA-AuNPs. The LTZ-BBR@AA-AuNPs, a novel combined drug delivery system, were carefully designed to maximise the entrapment of both LTZ and BBR. The resulting spherical nanoparticles exhibited remarkable efficiency in trapping these two compounds, with rates of 58% and 54%, respectively. In particular, the average hydrodynamic diameter of these nanoparticles was determined to be 81.23 ± 4.0 nm with a PDI value of only 0.286, indicating excellent uniformity between them. Furthermore, their zeta potential was observed to be -14.5 mV, suggesting high stability even under physiological conditions. The release profiles showed that after being incubated for about 24 h at pH levels ranging from acidic (pH = 5) to basic (pH = 7), the percentage released for both drugs ranged from 56-72%. This sustained and controlled drug release can reduce any negative side effects while improving therapeutic efficacy when administered directly to cancer. MDA-MB-231 cells treated with LTZ-BBR@AA-AuNPs for 48 h exhibited IC50 values of 2.04 ± 0.011 µg/mL, indicating potent cytotoxicity against cells. Furthermore, the nanoparticles demonstrated excellent stability throughout the duration of the treatment.

10.
J Nat Prod ; 86(7): 1786-1792, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37450763

RESUMO

Bioassay-guided fractionation of the essential oil of Santalum album led to the identification of α-santalol (1) and ß-santalol (2) as new chemotypes of cannabinoid receptor type II (CB2) ligands with Ki values of 10.49 and 8.19 µM, respectively. Nine structurally new α-santalol derivatives (4a-4h and 5) were synthesized to identify more selective and potent CB2 ligands. Compound 4e with a piperazine structural moiety demonstrated a Ki value of 0.99 µM against CB2 receptor and did not show binding activity against cannabinoid receptor type I (CB1) at 10 µM. Compounds 1, 2, and 4e increased intracellular calcium influx in SH-SY5Y human neuroblastoma cells that were attenuated by CB2 antagonism or inverse agonism, supporting the results that these compounds are CB2 agonists. Molecular docking showed that 1 and 4e had similar binding poses, exhibiting a unique interaction with Thr114 within the CB2 receptor, and that the piperazine structural moiety is required for the binding affinity of 4e. A 200 ns molecular dynamics simulation of CB2 complexed with 4e confirmed the stability of the complex. This structural insight lays a foundation to further design and synthesize more potent and selective α-santalol-based CB2 ligands for drug discovery.


Assuntos
Agonismo Inverso de Drogas , Neuroblastoma , Humanos , Simulação de Acoplamento Molecular , Ligantes , Receptores de Canabinoides , Piperazinas/farmacologia , Receptor CB2 de Canabinoide , Receptor CB1 de Canabinoide , Estrutura Molecular , Relação Estrutura-Atividade
11.
Molecules ; 28(11)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37298969

RESUMO

The lichen Cetraria islandica (L.) Ach. has been used in traditional and modern medicines for its many biological properties such as immunological, immunomodulating, antioxidant, antimicrobial, and anti-inflammatory activities. This species is gaining popularity in the market, with interest from many industries for selling as medicines, dietary supplements, and daily herbal drinks. This study profiled the morpho-anatomical features by light, fluorescence, and scanning electron microscopy; conducted an elemental analysis using energy-dispersive X-ray spectroscopy; and phytochemical analysis was performed using high-resolution mass spectrometry combined with a liquid chromatography system (LC-DAD-QToF) of C. islandica. In total, 37 compounds were identified and characterized based on comparisons with the literature data, retention times, and their mass fragmentation mechanism/s. The identified compounds were classified under five different classes, i.e., depsidones, depsides, dibenzofurans, aliphatic acids, and others that contain simple organic acids in majority. Two major compounds (fumaroprotocetraric acid and cetraric acid) were identified in the aqueous ethanolic and ethanolic extracts of C. islandica lichen. This detailed morpho-anatomical, EDS spectroscopy, and the developed LC-DAD-QToF approach for C. islandica will be important for correct species identification and can serve as a useful tool for taxonomical validation and chemical characterization. Additionally, chemical study of the extract of C. islandica led to isolation and structural elucidation of nine compounds, namely cetraric acid (1), 9'-(O-methyl)protocetraric acid (2), usnic acid (3), ergosterol peroxide (4), oleic acid (5), palmitic acid (6), stearic acid (7), sucrose (8), and arabinitol (9).


Assuntos
Líquens , Parmeliaceae , Parmeliaceae/química , Raios X , Líquens/química , Antioxidantes/farmacologia , Suplementos Nutricionais , Cromatografia Líquida de Alta Pressão , Extratos Vegetais
12.
Phytother Res ; 37(7): 3161-3181, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37246827

RESUMO

When used as an alternative source of drugs to treat inflammation-associated diseases, phytochemicals with anti-inflammatory properties provide beneficial impacts. Galangin is one of the most naturally occurring flavonoids. Galangin has many biological activities, such as anti-inflammatory, antioxidant, antiproliferative, antimicrobial, anti-obesity, antidiabetic, and anti-genotoxic activities. We observed that galangin was well tolerated and positively impacted disease underlying inflammation for the renal, hepatic, central nervous system, cardiovascular, gastrointestinal system, skin, and respiratory disorders, as well as ulcerative colitis, acute pancreatitis, retinopathy, osteoarthritis, osteoporosis, and rheumatoid arthritis. Galangin anti-inflammatory effects are mediated mainly by suppressing p38 mitogen-activated protein kinases, nuclear factor-kappa B, and nod-like receptor protein 3 signals. These effects are confirmed and supported by molecular docking. Clinical translational research is required to accelerate the bench-to-bedside transfer and determine whether galangin can be utilised as a safe, natural source of pharmaceutical anti-inflammatory medication for humans.


Assuntos
Pancreatite , Humanos , Doença Aguda , Simulação de Acoplamento Molecular , Pancreatite/induzido quimicamente , NF-kappa B/metabolismo , Inflamação/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Flavonoides/efeitos adversos
13.
Front Pharmacol ; 14: 1115721, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36817151

RESUMO

The most common form of dementia, Alzheimer's disease (AD), is characterized by gradual declines in cognitive abilities and behavior. It is caused by a combination of factors, including amyloid-ß (Aß) accumulation, acetylcholine (ACh) loss, oxidative stress, and inflammation. Phenolic compounds have a variety of health benefits, including antioxidant activities. Thus, the purpose of this study was to investigate how resveratrol (RES) alone and in combination with vitamin E affected rats with AD using scopolamine (SCO). Animals are categorized into groups; (i) control, (ii) SCO (1 mg/kg i.p.), (iii) SCO + donepezil, (iv) SCO + RES (50 mg/kg, p.o.), (v) SCO + RES (75 mg/kg, p.o.), (vi) SCO + RES (50 mg/kg + vitamin E 1 mg/kg, p.o.) for 17 days. In rats, studied behavioural (NOR and EPM) and biochemical characteristics. In addition, brain histopathology was examined to investigate any damage to the hippocampus and neuroprotection. SCO-induced changes in acetylcholinesterase, protein carbonyl, and TNF-α improved after resveratrol treatment. RES increased antioxidant levels, decreased SCO-induced lipid peroxidation, and reversed SCO-mediated changes compared with the drug donepezil. The results indicated that RES and vitamin E had nootropic action in the NOR and EPM tests, measured by the recognition index and the inflection ratio. This study supports the efficacy of RES as a preventive and treatment agent for AD. Vitamin E showed a synergistic effect on RES, which helps in managing cognitive impairment AD.

14.
ACS Omega ; 7(39): 34990-34996, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36211083

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) is a foremost treatment challenge in today's clinical practice. Natural coumarins contain a variety of bioactivities and have the ability to alter resistance in several ways. In developing effective drug delivery methods, the goal is to maximize biocompatibility while minimizing toxicity. With this in mind, this work investigated the site-specific potential of dendrimer G4 poloxamer nanoparticles loaded with bioactive coumarin. The goal of the current work is to deliver a complete evaluation of dendrimer G4 poloxamer nanoparticles against MRSA. Coumarin-loaded dendrimer G4 poloxamer nanoparticles were thoroughly investigated and characterized using various techniques, including particle size, shape, entrapment efficiency, in vitro drug release, hemolysis assay, cytotoxicity, antibacterial activity, and bactericidal kinetics. Studies showed that the newly developed dendrimer G4 poloxamer nanoparticles exhibited significantly lower levels of hemolysis and cytotoxicity. The results showed that the in vitro drug release of coumarin from dendrimer G4 poloxamer nanoparticles was slower compared to coumarin in its free form. This innovative therapeutic delivery technology may enhance the defense of coumarin against MRSA.

15.
Plants (Basel) ; 11(20)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36297710

RESUMO

Medicines, their safety, effectiveness and quality are indispensable factors of national security, important on a global scale. The COVID-19 pandemic has once again emphasized the importance of improving the immune response of the body in the face of severe viral infections. Plants from the Salvia L. genus have long been used in traditional medicine for treatment of inflammatory processes, parasitic diseases, bacterial and viral infections. The aim of the current study was to evaluate the immunomodulatory effects of plant extracts LS-1, LS-2 from Salvia deserta Schang. and LS-3, LS-4 from Salvia sclarea L. plants growing in southern Kazakhstan by conventional and ultrasonic-assisted extraction, respectively. The cytotoxic effects of the named sage extracts on neonatal human dermal fibroblasts (HDFn) were evaluated using the MTT assay. Immunomodulatory effects of the studied extracts were compared by examining their influence on pro-inflammatory cytokine secretion and phagocytic activity of murine immune cells. Depending on the physiological state of the innate immune cells, sage extracts LS-2 and LS-3 had either a stimulating effect on inactivated macrophages or suppressed cytokine-producing activity in LPS-activated macrophages. The greatest increase in TNF-α secretion was found after treatment of spleen T lymphocytes with sage extract LS-2, obtained by ultrasonic-assisted extraction.

16.
Life Sci ; 306: 120697, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35718235

RESUMO

Berberine (BBR) is a pentacyclic benzylisoquinoline alkaloid that can be found in diversity of medicinal plants. BBR has a wide range of pharmacological bioactivities, in addition when administrated orally, it has a broad safety margin. It has been used as an antidiarrheal, antimicrobial, and anti-diabetic drug in Ayurvedic and Chinese medicine. Several scholars have found that BBR has promising renoprotective effects against different renal illnesses, including diabetic nephropathy, renal fibrosis, renal ischemia, renal aging, and renal stones. Also, it has renoprotective effects against nephrotoxicity induced by chemotherapy, heavy metal, aminoglycosides, NSAID, and others. These effects imply that BBR has an evolving therapeutic potential against acute renal failure and chronic renal diseases. Hence, we report herein the beneficial therapeutic renoprotective properties of BBR, as well as the highlighted molecular mechanism. In conclusion, the studies discussed throughout this review will afford a comprehensive overview about renoprotective effect of BBR and its therapeutic impact on different renal diseases.


Assuntos
Berberina , Diabetes Mellitus Experimental , Nefropatias Diabéticas , Animais , Berberina/farmacologia , Berberina/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/prevenção & controle , Rim
17.
Int J Mol Sci ; 23(8)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35457108

RESUMO

Vitamin E acetate, which is used as a diluent of tetrahydrocannabinol (THC), has been reported as the primary causative agent of e-cigarette, or vaping, product use-associated lung injury (EVALI). Here, we employ in vitro assays, docking, and molecular dynamics (MD) computer simulations to investigate the interaction of vitamin E with the membrane-bound cannabinoid 2 receptor (CB2R), and its role in modulating the binding affinity of THC to CB2R. From the MD simulations, we determined that vitamin E interacts with both CB2R and membrane phospholipids. Notably, the synchronized effect of these interactions likely facilitates vitamin E acting as a lipid modulator for the cannabinoid system. Furthermore, MD simulation and trajectory analysis show that when THC binds to CB2R in the presence of vitamin E, the binding cavity widens, facilitating the entry of water molecules into it, leading to a reduced interaction of THC with CB2R. Additionally, the interaction between THC and vitamin E in solution is stabilized by several H bonds, which can directly limit the interaction of free THCs with CB2R. Overall, both the MD simulations and the in vitro dissociation assay results indicate that THC binding to CB2R is reduced in the presence of vitamin E. Our study discusses the role of vitamin E in limiting the effect of THCs and its implications on the reported pathology of EVALI.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Vaping , Dronabinol/farmacologia , Doenças Genéticas Ligadas ao Cromossomo X , Receptores de Canabinoides , Trombocitopenia , Vitamina E/farmacologia
18.
Molecules ; 27(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35164196

RESUMO

The herbal plant Petroselinum crispum (P. crispum) (Mill) is commonly available around the world. In this study, the leaves of the herbal plant P. crispum were collected from the central region of Al-Kharj, Saudi Arabia, to explore their in vitro pharmacological activity. Essential oil from the leaves of P. crispum was isolated using the hydrodistillation method. The composition of P. crispum essential oil (PCEO) was determined using Gas chromatography-mass spectrometry (GC-MS). A total of 67 components were identified, representing approximately 96.02% of the total volatile composition. Myristicin was identified as the principal constituent (41.45%). The in vitro biological activity was assessed to evaluate the antioxidant, antimicrobial, and anti-inflammatory potential of PCEO. PCEO showed the highest antimicrobial activity against Candida albicans and Staphylococcus aureus among all the evaluated microbial species. In vitro anti-inflammatory evaluation using albumin and trypsin assays showed the excellent anti-inflammatory potential of PCEO compared to the standard drugs. An in silico study of the primary PCEO compound was conducted using online tools such as PASS, Swiss ADME, and Molecular docking. In silico PASS prediction results supported our in vitro findings. Swiss ADME revealed the drug likeness and safety properties of the major metabolites present in PCEO. Molecular docking results were obtained by studying the interaction of Myristicin with an antifungal (PDB: 1IYL and 3LD6), antibacterial (PDB: 1AJ6 and 1JIJ), antioxidant (PDB: 3NM8 and 1HD2), and anti-inflammatory (3N8Y and 3LN1) receptors supported the in vitro results. Therefore, PCEO or Myristicin might be valuable for developing anti-inflammatory and antimicrobial drugs.


Assuntos
Magnoliopsida/química , Folhas de Planta/química , Anti-Infecciosos/análise , Anti-Inflamatórios/farmacologia , Antifúngicos/farmacologia , Simulação por Computador , Técnicas In Vitro , Folhas de Planta/crescimento & desenvolvimento , Arábia Saudita
19.
Molecules ; 27(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35056824

RESUMO

Modulation of the endocannabinoid system (ECS) is of great interest for its therapeutic relevance in several pathophysiological processes. The CB2 subtype is largely localized to immune effectors, including microglia within the central nervous system, where it promotes anti-inflammation. Recently, a rational drug design toward precise modulation of the CB2 active site revealed the novelty of Pyrrolo[2,1-c][1,4]benzodiazepines tricyclic chemotype with a high conformational similarity in comparison to the existing leads. These compounds are structurally unique, confirming their chemotype novelty. In our continuing search for new chemotypes as selective CB2 regulatory molecules, following SAR approaches, a total of 17 selected (S,E)-11-[2-(arylmethylene)hydrazono]-PBD analogs were synthesized and tested for their ability to bind to the CB1 and CB2 receptor orthosteric sites. A competitive [3H]CP-55,940 binding screen revealed five compounds that exhibited >60% displacement at 10 µM concentration. Further concentration-response analysis revealed two compounds, 4k and 4q, as potent and selective CB2 ligands with sub-micromolar activities (Ki = 146 nM and 137 nM, respectively). In order to support the potential efficacy and safety of the analogs, the oral and intravenous pharmacokinetic properties of compound 4k were sought. Compound 4k was orally bioavailable, reaching maximum brain concentrations of 602 ± 162 ng/g (p.o.) with an elimination half-life of 22.9 ± 3.73 h. Whether administered via the oral or intravenous route, the elimination half-lives ranged between 9.3 and 16.7 h in the liver and kidneys. These compounds represent novel chemotypes, which can be further optimized for improved affinity and selectivity toward the CB2 receptor.


Assuntos
Benzodiazepinas/administração & dosagem , Encéfalo/metabolismo , Desenho de Fármacos , Endocanabinoides/metabolismo , Rim/metabolismo , Fígado/metabolismo , Pirróis/administração & dosagem , Receptores de Canabinoides/metabolismo , Administração Oral , Animais , Benzodiazepinas/química , Sítios de Ligação , Ligantes , Masculino , Camundongos , Modelos Moleculares , Pirróis/química , Receptores de Canabinoides/química , Relação Estrutura-Atividade
20.
Phytochemistry ; 195: 113054, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34979354

RESUMO

In our ongoing effort to investigate active specialised metabolites from genus Glandularia, phytochemical studies on the ethanolic extract of Glandularia × hybrida (Groenl. & Rümpler) G.L. Nesom & Pruski leaves resulted in the isolation of three undescribed compounds, a dibenzylbutyrolactolic lignan and two echinocystic acid based triterpenoid saponins, in addition to two known compounds. Interestingly, this study reports isolation of chemo-systematically valuable specialised metabolites for the first time from the genus under investigation. Additionally, the isolated metabolites were evaluated for their iNOS inhibition and cytotoxic activities using a combination of in silico and in vitro studies. The pharmacokinetics properties (ADMET) of some of the isolated compounds were determined using pkCSM-pharmacokinetics server. Molecular docking analysis showed that saponin compound possesses higher negative score (-9.59 kcal/mol) than the lignan compound (-6.56 kcal/mol). The isolated compounds also showed iNOS inhibition activity with IC50 values ranging between 6.6 and 49.7 µM and significant cytotoxic activity against a series of cell lines including SK-MEL, KB, BT-549, SK-OV-3, LLC-PK1 and VERO cells. Hence, this study reveals that specialised metabolites from G. hybrida plant are of significant anti-inflammatory and cytotoxicity potentials.


Assuntos
Antineoplásicos Fitogênicos , Verbenaceae , Animais , Anti-Inflamatórios/farmacologia , Chlorocebus aethiops , Simulação de Acoplamento Molecular , Folhas de Planta , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA