Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Aquat Anim Health ; 35(4): 223-237, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37965694

RESUMO

OBJECTIVE: Proliferative gill disease (PGD) in Channel Catfish Ictalurus punctatus and hybrid catfish (Channel Catfish × Blue Catfish I. furcatus) is attributed to the myxozoan Henneguya ictaluri. Despite evidence of decreased H. ictaluri transmission and impaired parasite development in hybrid catfish, PGD still occurs in hybrid production systems. Previous metagenomic assessments of clinical PGD cases revealed numerous myxozoans within affected gill tissues in addition to H. ictaluri. The objective of this study was to investigate the development and pathologic contributions of H. ictaluri and other myxozoans in naturally and experimentally induced PGD. METHODS: Henneguya species-specific in situ hybridization (ISH) assays were developed using RNAscope technology. Natural infections were sourced from diagnostic case submissions in 2019. Experimental challenges involved Channel Catfish and hybrid catfish exposed to pond water from an active PGD outbreak, and the fish were sampled at 1, 7, 10, 12, 14, 16, 18, and 20 weeks postchallenge. RESULT: Nine unique ISH probes were designed, targeting a diagnostic variable region of the 18S ribosomal RNA gene of select myxozoan taxa identified in clinical PGD cases. Partial validation from pure H. ictaluri, H. adiposa, H. postexilis, and H. exilis infections illustrated species-specific labeling and no cross-reactivity between different myxozoan species or the catfish hosts. After experimental challenge, mature plasmodia of H. ictaluri and H. postexilis formed in Channel Catfish but were not observed in hybrids, suggesting impaired or delayed sporogenesis in the hybridized host. These investigations also confirmed the presence of mixed infections in clinical PGD cases. CONCLUSION: Although H. ictaluri appears to be the primary cause of PGD, presporogonic stages of other myxozoans were also present, which may contribute to disease pathology and exacerbate respiratory compromise by further altering normal gill morphology. This work provides molecular confirmation and more resolute developmental timelines of H. ictaluri and H. postexilis in Channel Catfish and supports previous research indicating impaired or precluded H. ictaluri sporogony in hybrid catfish.


Assuntos
Peixes-Gato , Coinfecção , Doenças dos Peixes , Ictaluridae , Myxozoa , Doenças Parasitárias em Animais , Animais , Peixes-Gato/genética , Brânquias/parasitologia , Mississippi , Coinfecção/veterinária , Doenças dos Peixes/epidemiologia , Doenças Parasitárias em Animais/parasitologia , Myxozoa/genética , Aquicultura
2.
Zool J Linn Soc ; 196(1): 124-136, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36051981

RESUMO

Alaria, Didelphodiplostomum and Pharyngostomoides are among genera of diplostomid digeneans known to parasitize mammalian definitive hosts. Despite numerous recent molecular phylogenetic studies of diplostomids, limited DNA sequence data is available from diplostomids parasitic in mammals. Herein, we provide the first 28S rDNA and cox1 mtDNA sequences from morphologically identified, adult specimens of Didelphodiplostomum and Pharyngostomoides. Newly generated 28S sequences were used to infer the phylogenetic interrelationships of these two genera among other major lineages of diplostomoideans. The phylogeny based on 28S and a review of morphology clearly suggests that Pharyngostomoides should be considered a junior synonym of Alaria, while Didelphodiplostomum should be considered a junior synonym of Tylodelphys. Pharyngostomoides procyonis (type species), Pharyngostomoides adenocephala and Pharyngostomoides dasyuri were transferred into Alaria as Alaria procyonis comb. nov., Alaria adenocephala comb. nov. and Alaria dasyuri comb. nov.; Didelphodiplostomum variabile (type species) and Didelphodiplostomum nunezae were transferred into Tylodelphys as Tylodelphys variabilis comb. nov. and Tylodelphys nunezae comb. nov. In addition, Alaria ovalis comb. nov. (formerly included in Pharyngostomoides) was restored and transferred into Alaria based on a morphological study of well-fixed, adult specimens and the comparison of cox1 DNA sequences among Alaria spp. The diplostomid genus Parallelorchis was restored based on review of morphology.

3.
Dis Aquat Organ ; 149: 97-108, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35678355

RESUMO

Invasive red lionfish Pterois volitans (Linnaeus, 1758) represent an ongoing ecological threat within temperate and tropical waters. Relatively little is known regarding the overall health of P. volitans and their potential for spreading pathogens in non-native regions. Lionfish collected from inshore reefs of Grenada, West Indies, in 2019 and 2021 were identified as P. volitans based on cytochrome c oxidase subunit 1 barcoding. Gross and microscopic examination of tissues revealed myxozoan plasmodia in the hearts of 24/76 (31.6%) lionfish by histopathology or wet mount cytology. Further histopathologic examination revealed severe granulomatous inflammation and myofiber necrosis associated with developing plasmodia and presporogonic life stages. Fresh myxospores were morphologically and molecularly consistent with Kudoa hypoepicardialis, being quadrate in apical view with 4 valves and 4 equal polar capsules. The spore body was 5.1-7.9 (mean: 6.0) µm long, 8.1-9.8 (8.7) µm wide, and 6.9-8.5 (7.7) µm thick. Polar capsules were 2.3-2.7 (2.5) µm long and 0.9-1.6 (1.3) µm wide. 18S small subunit rDNA sequences were 99.81-99.87% similar to sequence data from the original description of the species. Novel 28S large subunit rDNA and elongation factor 2 data, which did not match any previously reported species, were provided. This is the first account of a myxozoan parasite of P. volitans, a new host record and locality for K. hypoepicardialis, and one of few reports describing pathogen-associated lesions in invasive lionfish.


Assuntos
Myxozoa , Perciformes , Animais , Cápsulas , DNA Ribossômico , Granada , Espécies Introduzidas , Myxozoa/genética , Perciformes/parasitologia
4.
J Parasitol ; 108(2): 141-158, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35353188

RESUMO

The echinostomatid Drepanocephalus spathans (syn. Drepanocephalus auritus) parasitizes the double-crested cormorant Phalacrocorax auritus. In North America, the marsh rams-horn snail Planorbella trivolvis and ghost rams-horn snail Biomphalaria havanensis serve as snail intermediate hosts, both of which inhabit catfish aquaculture ponds in the southeastern United States. Studies have demonstrated D. spathans exposure can be lethal to juvenile channel catfish Ictalurus punctatus. Two studies were undertaken to elucidate the life cycle of D. spathans to establish a developmental time line. In both studies, D. spathans cercariae collected from naturally infected P. trivolvis individuals were used to infect channel catfish fingerlings, which were then fed to double-crested cormorants (DCCOs) that had been pharmaceutically dewormed. In study 1, laboratory-reared P. trivolvis and B. havanensis individuals were placed in aviary ponds with experimentally infected DCCO and examined bi-weekly for release of cercariae. Trematode eggs were observed in the feces of exposed birds 3 days post-infection. Birds were sacrificed 18 days post-exposure (dpe), and gravid adults morphologically and molecularly consistent with D. spathans were recovered. Snails from the aviary pond were observed shedding D. spathans cercariae 18-54 dpe. In study 2, trematode eggs were observed in the feces of exposed DCCOs beginning 8 dpe. Once eggs were observed, birds were allowed to defecate into clean tanks containing naïve laboratory-reared P. trivolvis individuals. Additionally, eggs from experimental DCCO feces were recovered by sedimentation and placed in an aquarium housing laboratory-reared P. trivolvis individuals. Birds in study 2 were sacrificed after 60 days, and gravid D. spathans specimens were recovered. Snails from the experimental DCCO tanks shed D. spathans cercariae 89-97 dpe. Lastly, trematode eggs were isolated and observed for the hatching of miracidia, which emerged on average after 16 days at ambient temperatures. No D. spathans adults were observed in control birds fed non-parasitized fish. This is the first experimental confirmation of the D. spathans life cycle, resolving previously unknown developmental time lines. In addition, the effects of fixation on adult trematode morphology were assessed, clarifying reports of pronounced morphological plasticity for D. spathans.


Assuntos
Echinostomatidae , Ictaluridae , Trematódeos , Infecções por Trematódeos , Animais , Estágios do Ciclo de Vida , Masculino , Ovinos , Infecções por Trematódeos/veterinária , Estados Unidos
5.
Syst Parasitol ; 99(1): 41-62, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35028798

RESUMO

Previous morphological and histological data are supplemented with molecular and ultrastructural data for a Henneguya sp. isolated from farm-raised channel catfish Ictalurus punctatus in Mississippi, USA. Myxospores were cryptic, encapsulated within a thin layer of epithelium in the gill lamellae with spore measurements consistent with the original description of Henneguya postexilis Minchew, 1977. Myxospores were 42.7-49.1 µm in total length with spore bodies 12.1-17.2 × 3.6-4.8 × 2.9-3 µm. Polar capsules were of unequal length, with the longer capsule being 4.4-6.7 × 1.1-1.6 µm and the shorter capsule being 4.4-6.4 × 1.1-1.6 µm. Polar tubules had 6-8 turns. Caudal processes were 25.7-38.1 µm in length. Spores were encapsulated in a thin layer of epithelium in the gill lamellae. Molecular data from the most commonly used markers for myxozoan identification and phylogeny, partial 18S small subunit ribosomal gene (SSU), partial 28S large subunit ribosomal gene (LSU), and elongation factor 2 (EF2) were generated for H. postexilis. Additionally, novel data for LSU and EF2 were generated for archived myxozoan specimens from farm-raised catfish (H. mississippiensis, H. ictaluri, H. exilis, H. adiposa, H. sutherlandi, H. bulbosus, Unicauda fimbrethilae), as well as archived specimens from wild fish (H. laseeae [from Pylodictis olivaris], Hennegoides flockae [from Aphredoderus sayanus], Myxobolus cloutmani [from Cycleptus elongatus]. These include the first EF2 sequence data for the genera Hennegoides and Unicauda. Phylogenetic analyses using these data placed H. postexilis in well supported clades with other ictalurid-infecting Henneguya species. Phylogenetic signal assessments on these analyses suggest that while SSU provided the greatest phylogenetic signal, LSU yielded comparable signal, supporting previous work implying this region may be underutilised in reconstructing myxobolid phylogenies.


Assuntos
Doenças dos Peixes , Ictaluridae , Myxozoa , Parasitos , Doenças Parasitárias em Animais , Animais , Doenças dos Peixes/parasitologia , Brânquias/parasitologia , Ictaluridae/parasitologia , Myxozoa/genética , Doenças Parasitárias em Animais/parasitologia , Filogenia , Especificidade da Espécie
6.
Parasitology ; 149(4): 542-554, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35042575

RESUMO

Fibricola and Neodiplostomum are diplostomid genera with very similar morphology that are currently separated based on their definitive hosts. Fibricola spp. are normally found in mammals, while Neodiplostomum spp. typically parasitize birds. Previously, no DNA sequence data was available for any member of Fibricola. We generated nuclear ribosomal and mtDNA sequences of Fibricola cratera (type-species), Fibricola lucidum and 6 species of Neodiplostomum. DNA sequences were used to examine phylogenetic interrelationships among Fibricola and Neodiplostomum and re-evaluate their systematics. Molecular phylogenies and morphological study suggest that Fibricola should be considered a junior synonym of Neodiplostomum. Therefore, we synonymize the two genera and transfer all members of Fibricola into Neodiplostomum. Specimens morphologically identified as Neodiplostomum cratera belonged to 3 distinct phylogenetic clades based on mitochondrial data. One of those clades also included sequences of specimens identified morphologically as Neodiplostomum lucidum. Further study is necessary to resolve the situation regarding the morphology of N. cratera. Our results demonstrated that some DNA sequences of N. americanum available in GenBank originate from misidentified Neodiplostomum banghami. Molecular phylogentic data revealed at least 2 independent host-switching events between avian and mammalian hosts in the evolutionary history of Neodiplostomum; however, the directionality of these host-switching events remains unclear.


Assuntos
Platelmintos , Trematódeos , Animais , Aves , DNA Mitocondrial/genética , Mamíferos , Filogenia , Platelmintos/genética
7.
J Parasitol ; 107(4): 582-592, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34314485

RESUMO

During 9-10 February 2018 and 21-22 February 2020, 7 adult Blue Suckers, Cycleptus elongatus, were collected by hoop nets from the Red River, Little River County (n = 3), and the Black River, Lawrence County (n = 4), Arkansas, and their gills, gallbladders, fins, integument, other major organs, and musculature were examined for myxozoans. All 7 (100%) were infected with an unknown species of gill-infecting Myxobolus sp. Twenty formalin-fixed plasmodia (cysts) of Myxobolus cloutmani n. sp. were elliptoidal, 407 µm long × 270 µm wide. Formalin-fixed myxospores were orbicular to broadly elliptoidal, 8.7 µm long × 7.8 µm wide. Two polar capsules were pyriform and subequal in size, extending over halfway in the myxospore. The larger polar capsule was 5.5 µm long × 3.1 µm wide, while the shorter was 5.1 × 2.9 µm. A coiled polar filament possessed 5 or 6 coils. The myxospore was 3.7 µm thick in sutural view, with a distinct sutural ridge. Qualitative and quantitative morphological data were from formalin-fixed as well as ethanol-preserved spores, while molecular data consisted of a 2,010 base pair sequence of the partial 18S ribosomal RNA gene and a 2,502 base pair sequence of the partial 28S ribosomal RNA gene. Phylogenetic analysis grouped M. cloutmani n. sp. with the other catostomid-infecting myxobolids. This is the first myxozoan reported from C. elongatus.


Assuntos
Cipriniformes/parasitologia , Doenças dos Peixes/parasitologia , Myxobolus/classificação , Doenças Parasitárias em Animais/parasitologia , Animais , Arkansas/epidemiologia , Doenças dos Peixes/epidemiologia , Brânquias/parasitologia , Myxobolus/genética , Myxobolus/isolamento & purificação , Doenças Parasitárias em Animais/epidemiologia , Filogenia , Rios
8.
Syst Parasitol ; 98(4): 423-441, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34114095

RESUMO

Characterising myxozoan taxa parasitising fish hosts in catfish aquaculture ponds is crucial to understanding myxozoan community dynamics in these diverse and complex ecological systems. This work investigated the myxozoan fauna of the western mosquitofish, Gambusia affinis, a common, incidental species found in catfish aquaculture ponds in the southeastern United States. 598 fish were sampled in May of 2018 and 2019 from the pond facility of the Thad Cochran National Warmwater Aquaculture Center in Stoneville, Mississippi, USA. Fish were examined microscopically using wet mount preparations of fresh tissue and histology for myxozoans. 18S rRNA gene sequences were amplified from myxospores obtained at necropsy. Updated morphologic, histologic, and 18S rRNA gene sequence features are provided for Henneguya gambusi, Myxobolus pharyngeus, and Myxidium phyllium. Two potentially novel myxozoans were observed during this survey, an undocumented Myxobolus sp. associated with chondrolysis of bones throughout the body and a putative Myxobilatus sp. observed histologically in the renal tubules, ureters, and urinary bladder. However, inadequate samples were obtained for proper species descriptions. Lastly, the life cycle of M. pharyngeus, which is thought to utilize the oligochaete worm Dero digitata as their definitive host, was putatively confirmed by 18S rRNA sequence matching to actinospore stages from oligochaetes in catfish ponds in Mississippi. This work provides novel and expanded morphologic, histologic, molecular and biologic data of five myxozoan parasites of G. affinis, expanding our knowledge of myxozoan diversity in catfish aquaculture ponds.


Assuntos
Ciprinodontiformes/parasitologia , Myxozoa/classificação , Animais , Estágios do Ciclo de Vida , Mississippi , Myxozoa/anatomia & histologia , Myxozoa/genética , Lagoas , RNA Ribossômico 18S/genética , Especificidade da Espécie
9.
Syst Parasitol ; 98(2): 119-130, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33687653

RESUMO

Henneguya Thélohan, 1892 is the second most species rich genus of myxozoans, with reports from freshwater and marine fish worldwide. In the Great Lakes region of North America, muskellunge Esox masquinongy is an important game fish species that serves as an apex predator in the ecosystems of many inland lakes. The myxozoan fauna of esocid fish, especially muskellunge, remains largely understudied. During fish health assessments, muskellunge were examined for parasitic infections and myxozoan pseudocysts were observed on gill clip wet mounts. When ruptured under pressure, the intralamellar pseudocysts released thousands of myxospores consistent with those of the genus Henneguya. The myxospores were 67.3-96.6 (79.1 ± 5.9) µm in total length. The spore body was 18.6-22.6 (20.9 ± 1.0) µm × 5.4-6.9 (6.3 ± 0.4) µm in valvular view and 3.5-4.0 (3.8 ± 0.3) µm wide in sutural view. The two pyriform polar capsules positioned at the anterior of the spore body were 6.4-7.7 (7.0 ± 0.4) µm × 1.8-2.1 (2.0 ± 0.1) µm and each contained a tightly coiled polar filament with 9-10 turns. Two tapering caudal processes extended from the posterior of the spore body and were 47.3-75.6 (58.3 ± 5.8) µm in length. Histologically, large intralamellar polysporic plasmodia were surrounded by plump pillar cells and a distinct layer of plasma. Mild inflammation was present peripherally, with small numbers of necrotic germinative cells and intraplasmodial phagocytes internally. Ribosomal 18S rRNA gene sequence data were obtained from three gill pseudocysts. The three ~2000-bp sequences were identical, but shared no significant similarity with any publicly available sequence data. Phylogenetic analyses demonstrated sequence data from this Henneguya fell within a well-supported clade of Henneguya spp. reported from northern pike Esox lucius in Europe. Based on the distinct morphological, histological and molecular data, this species is designated as Henneguya michiganensis n. sp. from muskellunge in Michigan, USA.


Assuntos
Esocidae/parasitologia , Brânquias/parasitologia , Myxozoa/classificação , Animais , Great Lakes Region , Myxozoa/anatomia & histologia , Myxozoa/genética , RNA Ribossômico 18S/genética , Especificidade da Espécie
10.
J Parasitol ; 107(2): 267-274, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33784742

RESUMO

The hawksbill turtle Eretmochelys imbricata is a critically endangered species with a worldwide distribution. Limited information is available about the naturally occurring intestinal parasites of this species and what impact these parasites may have on the health of the hawksbill turtle. Diaschistorchis pandus was identified postmortem in 5 hawksbill turtles from Grenada, West Indies, using morphologic characterization. Sanger sequencing was performed for conserved ribosomal regions (5.8S, ITS2, 28S) and the mitochondrial cytochrome c oxidase subunit 1 gene (COI). Phylogenetic analysis of the 28S rRNA gene sequence data shows D. pandus clustering with other trematodes in the family Pronocephalidae, corroborating morphological classification. No genetic sequences have been previously reported for this trematode species, which has limited the collection of objective epidemiological data about this parasite of marine turtles.


Assuntos
Trematódeos/classificação , Infecções por Trematódeos/veterinária , Tartarugas/parasitologia , Animais , Autopsia/veterinária , DNA de Helmintos/química , DNA de Helmintos/genética , Espécies em Perigo de Extinção , Granada , Intestino Delgado/parasitologia , Intestino Delgado/patologia , Masculino , Filogenia , RNA Ribossômico 28S/genética , Trematódeos/anatomia & histologia , Trematódeos/genética , Trematódeos/isolamento & purificação , Infecções por Trematódeos/parasitologia
11.
Acta Parasitol ; 66(2): 699-705, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33387271

RESUMO

AIM: The present work aims to morphologically and molecularly characterize an Eimeria sp. recovered from an adult, captive barred owl Strix varia in Mississippi, USA. While the owl was shedding oocysts, no clinical signs of coccidiosis were observed. MATERIALS AND METHODS: Oocysts collected from a barred owl, S. varia were isolated from feces by fecal flotation and characterized by light microscopy. The oocysts were allowed to sporulate in K2Cr2O7 for 7 days and measured for comparison with previously described Eimeria species. Genomic DNA was extracted from measured oocysts and the cytochrome c oxidase subunit 1 mitochondrial gene was amplified and sequenced for comparison and phylogenetic analyses with publicly available sequence data. RESULTS: Oocysts collected from S. varia were morphologically and molecularly consistent with all previous accounts of Eimeria megabubonis from the great horned owl Bubo virginianus and morphologically consistent with the only account of Eimeria varia from S. varia. Phylogenetic analyses grouped the E. megabubonis sequence from the present study with previously reported sequences from E. megabubonis. CONCLUSION: Morphological and molecular data from oocysts collected in this study reveal S. varia is a host for E. megabubonis. Agreement between current data, morphological and molecular data of E. megabubonis, and morphological data from the original description of E. varia indicates E. varia is a junior synonym of E. megabubonis.


Assuntos
Coccidiose , Eimeria , Estrigiformes , Animais , Coccidiose/veterinária , Eimeria/genética , Fezes , Oocistos , Filogenia
12.
Syst Parasitol ; 97(6): 649-659, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32951165

RESUMO

A group of red-bellied piranha, Pygocentrus nattereri Kner, recently imported from Peru exhibited multifocal, cutaneous ulcerations with exposure of the underlying musculature. Skin scrapes yielded moderate numbers of myxospores morphologically consistent with Myxobolus Bütschli, 1882. Myxospores from these fish were morphologically and molecularly distinct from other myxobolids infecting piranha. Myxospores are pyriform to capsular with a rounded posterior and slightly rounded to tapering anterior aspect in valvular view. Myxospore bodies are 14.3-17.8 (mean 16.1) µm long and 7.6-10.3 (mean 8.9) µm wide. Polar capsules are symmetrical, slender, elongate, and measure 7.4-10.2 (mean 9.2) µm long and 2.1-3.7 (mean 3.0) µm wide. Sequence generated for the 18S rRNA gene had no direct matches to any sequence available on GenBank but demonstrated less than 89% nucleotide similarity to various published and unpublished Myxobolus spp. from Piaractus brachypomus (Cuvier) and Colossoma macropomum (Cuvier). This paper provides the morphological and molecular characterisation of Myxobolus dermatoulcerans n. sp. from red-bellied piranha and describes associated pathological lesions.


Assuntos
Caraciformes/parasitologia , Dermatite/parasitologia , Doenças dos Peixes/parasitologia , Myxobolus/classificação , Animais , Myxobolus/anatomia & histologia , Myxobolus/genética , Peru , RNA Ribossômico 18S/genética , Especificidade da Espécie
13.
J Virol ; 94(15)2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32434883

RESUMO

The first isolation of a flavivirus from fish was made from moribund Chinook salmon (Oncorhynchus tshawytscha) from the Eel River, California, USA. Following the observation of cytopathic effect in a striped-snakehead fish cell line, 35-nm virions with flaviviral morphology were visualized using electron microcopy. Next-generation sequencing and rapid amplification of cDNA ends obtained the complete genome. Reverse transcriptase quantitative PCR (RT-qPCR) confirmed the presence of viral RNA in formalin-fixed tissues from the wild salmon. For the first time, in vivo replication of an aquatic flavivirus was demonstrated following intracoelomic injection in a Chinook salmon model of infection. RT-qPCR demonstrated viral replication in salmon brains up to 15 days postinjection. Infectious virus was then reisolated in culture, fulfilling Rivers' postulates. Only limited replication occurred in the kidneys of Chinook salmon or in tissues of rainbow trout (Oncorhynchus mykiss). The proposed salmon flavivirus (SFV) has a 10.3-kb genome that encodes a rare dual open reading frame, a feature uncharacteristic of classical flaviviruses. Phylogenetic analysis places SFV in a basal position among a new subgroup of recently recognized aquatic and bat flaviviruses distinct from the established mosquito-borne, tick-borne, insect-only, and unknown-vector flavivirus groups. While the pathogenic potential of the virus remains to be fully elucidated, its basal phylogeny and the in vivo infection model will allow SFV to serve as a prototype for aquatic flaviviruses. Ongoing field and laboratory studies will facilitate better understanding of the potential impacts of SFV infection on ecologically and economically important salmonid species.IMPORTANCE Chinook salmon are a keystone fish species of great ecological and commercial significance in their native northern Pacific range and in regions to which they have been introduced. Threats to salmon populations include habitat degradation, climate change, and infectious agents, including viruses. While the first isolation of a flavivirus from wild migrating salmon may indicate an emerging disease threat, characterization of the genome provides insights into the ecology and long evolutionary history of this important group of viruses affecting humans and other animals and into an expanding group of recently discovered aquatic flaviviruses.


Assuntos
Doenças dos Peixes , Infecções por Flavivirus , Flavivirus , Genoma Viral , Modelos Biológicos , Oncorhynchus mykiss/virologia , Salmão/virologia , Replicação Viral , Animais , Doenças dos Peixes/genética , Doenças dos Peixes/virologia , Flavivirus/isolamento & purificação , Flavivirus/fisiologia , Infecções por Flavivirus/genética , Infecções por Flavivirus/veterinária , Infecções por Flavivirus/virologia , Rim/virologia
14.
Syst Parasitol ; 97(3): 305-314, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32253575

RESUMO

A previously undescribed Myxobolus sp. was isolated from the cranial nerves and ganglia of the spotfin hatchetfish Thoracocharax stellatus (Kner) that exhibited neurologic signs following importation from Colombia. Associated plasmodia formed space-occupying masses within nerves, compressing neuronal cell bodies and causing axonal degeneration. Myxospores from these fish were morphologically and molecularly distinct from other myxobolids infecting the central nervous system of characins. In valvular view, spores are pyriform with a rounded posterior and tapering anterior aspect. Myxospore bodies are 17.0-19.4 (mean 18.4) µm long and 8.2-9.3 (mean 8.8) µm wide. Polar capsules are asymmetrical and pyriform with a neck-like projection at the apical end. The small polar capsule measures 4.3-5.9 × 2.2-3.1 (mean 5.0 × 2.6) µm, while the large polar capsule measures 9.1-10.7 × 4.9-6.3 (mean 9.9 × 5.4) µm wide. The sequence generated for the small subunit rRNA (18S) gene did not directly match any sequences available on GenBank, but demonstrated 92% nucleotide similarity to Myxobolus axelrodi Camus, Dill, Rosser, Pote & Griffin, 2017 infecting Paracheirodon axelrodi (Schultz). This study provides the first morphological, histological and molecular characterisation of Myxobolus stellatus n. sp. from the spotfin hatchetfish.


Assuntos
Caraciformes/parasitologia , Nervos Cranianos/parasitologia , Doenças dos Peixes/parasitologia , Gânglios/parasitologia , Myxobolus/classificação , Doenças Parasitárias em Animais/parasitologia , Animais , Colômbia , Myxobolus/citologia , Myxobolus/genética , RNA Ribossômico 18S/genética
15.
J Fish Dis ; 43(5): 583-597, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32202327

RESUMO

Myxozoa (phylum Cnidaria) are a diverse group of metazoan parasites that predominately infect fish. Little is known regarding the composition and physiology of their myxospore life stage. The objective of this work was to investigate the composition of myxospores and extrasporogonic stages of nine myxozoan species infecting various teleost fish using histochemical staining techniques. Thirty histochemical stains were applied to formalin-fixed, paraffin-embedded tissues processed routinely for light microscopic evaluation. The polar capsules were the most consistent stain target across the taxa examined. Polar capsule staining with Alizarin red, von Kossa and methyl green-pyronin suggests the presence of intracapsular calcium and phosphate, which may contribute to polar filament discharge or pathogenesis of host invasion. The shell valves and suture lines of most myxozoans were stained with Luna and phosphotungstic acid haematoxylin stains, consistent with the presence of chitin and microfibrils, respectively. Vacuoles were consistently highlighted by diastase-susceptible periodic acid-Schiff and Grocott's methenamine silver staining, indicating glycogen. Other histochemical stains exhibited inconsistent staining across the taxa, suggesting differences in myxospore composition potentially reflective of physiologic variations and tissue tropisms. This work provides some information on conserved features and taxa-associated composition of myxospores and lends insight into myxozoan physiology and host-parasite interactions.


Assuntos
Myxozoa/classificação , Myxozoa/fisiologia , Animais , Biodiversidade , Doenças dos Peixes/parasitologia , Peixes/parasitologia , Interações Hospedeiro-Parasita , Doenças Parasitárias em Animais/parasitologia
16.
Acta Parasitol ; 65(2): 388-395, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32052241

RESUMO

BACKGROUND: Myxidium kudoi Meglitsch, 1937 has been described from the type host, blue catfish Ictalurus furcatus, with no additional host records or molecular data available for this species. PURPOSE: To provide molecular data and a novel host locality for this species and carry out phylogenetic analyses to infer the evolutionary relationship of the species to other members of the family Myxidiidae for which DNA sequence data is available. METHODS: These data were collected using myxospores from the gallbladder of a blue catfish, Ictalurus furcatus collected from Lake Texoma, Oklahoma, USA. Myxospores were morphologically consistent with the only other account of this species and not any other Myxidium species described from siluriform fishes. RESULTS: Myxospores were oblong with rounded ends and were 10.8-12.6 (11.6 ± 0.5) µm in length and 4.7-6.6 (5.7 ± 0.5) µm in width. Polar capsules were subspherical and 2.7-3.9 (3.4 ± 0.3) µm in length and 2.4-3.5 (3.1 ± 0.3) µm in diameter, with each capsule containing a polar filament with 3-4 coils. Molecular data consisted of a 2918-bp sequence of the partial 18S, complete ITS1, 5.8S, ITS2, and partial 28S ribosomal rRNA regions as well as a 2455-bp sequence of partial 28S ribosomal RNA. The partial 18S and 28S data was used in a concatenated Bayesian phylogenetic analysis to further infer the evolutionary relationships of the Myxidiidae. Additionally, the partial 18S data was used in a separate phylogenetic analysis. CONCLUSIONS: The present work reports novel morphological and molecular data for Myxidium kudoi as well as a novel locality of occurrence for this species. In concatenated phylogenetic analysis using 18S and 28S data and other molecular data from Myxozoa, M. kudoi grouped with other freshwater Myxidiidae. In the single-locus, 18S analysis, M. kudoi grouped with Myxidium rhodei from Rutilus rutilus and Myxidium amazonense from Corydoras melini, the only other Myxidium species of catfish for which molecular data are available.


Assuntos
Doenças dos Peixes/parasitologia , Ictaluridae/parasitologia , Myxozoa/anatomia & histologia , Myxozoa/genética , Doenças Parasitárias em Animais/parasitologia , Animais , Teorema de Bayes , Vesícula Biliar/parasitologia , Lagos , Myxozoa/classificação , Oklahoma , Filogenia , RNA Ribossômico 18S/química , RNA Ribossômico 28S/química , Alinhamento de Sequência , Esporos/ultraestrutura
17.
Syst Parasitol ; 97(1): 69-82, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31927705

RESUMO

With only six recognised genera, the family Clinostomidae Lühe, 1901 remains a global research interest of parasitologists and ecologists. Recent efforts have focused on providing molecular data to investigate species diversity, elucidate life-cycles, and make inferences on the group's evolutionary history. Of the clinostomid genera, the monotypic Ithyoclinostomum Witenberg, 1926 has remained more enigmatic compared to the commonly encountered Clinostomum Leidy, 1856. Recent morphological and molecular evidence from metacercariae suggests a second Ithyoclinostomum species may exist in freshwater cichlids in Central America and Mexico. In a recent survey of great blue herons Ardea herodias L. from commercial catfish production farms in Mississippi, USA, two specimens of an abnormally large (> 20 mm) clinostomid were encountered in the oesophagus of a single bird. These specimens were identified as an Ithyoclinostomum sp. morphologically distinct from the only nominal species Ithyoclinostomum dimorphum (Diesing, 1850). Using morphological and molecular data these adult specimens were confirmed as conspecific with the larval metacercariae previously described from Central America and Mexico and represent the novel species, Ithyoclinostomum yamagutii n. sp.


Assuntos
Aves/parasitologia , Trematódeos/classificação , Animais , DNA de Helmintos/genética , Esôfago/parasitologia , Mississippi , Especificidade da Espécie , Trematódeos/anatomia & histologia , Trematódeos/genética
18.
J Parasitol ; 105(6): 918-927, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31829908

RESUMO

The pirate perch Aphredoderus sayanus is a relatively small fish species found in rivers throughout much of the eastern United States. Due to their cryptic nature, relatively little is known regarding their parasite fauna. A survey of pirate perch from the upper Mississippi River revealed 2 novel myxozoans. Hennegoides flockae n. sp. was observed in heavily infected gills where the lamellae featured irregular expansion by bulbous myxozoan polysporic plasmodia, typically affecting the middle to distal half of the filaments. When severe, infection of sequential filaments was such that the filaments were fused, forming what appeared as multicystic/lobular parasitic aggregates subdivided by fine epithelial cords. The total myxospore length of Hennegoides flockae was 35.4-46.4 (41.3 ± 3.3) and the spore body, asymmetrically ovoid in valvular view, was 15.4-18.7 (17.0 ± 0.7) × 7.1-8.7 (7.9 ± 0.4). Henneguya marcquenskiae n. sp. was observed in the liver with plasmodia present randomly and infrequently in the hepatocellular parenchyma. The total myxospore length for Henneguya marcquenskiae was 39.5-55.9 (48.4 ± 4.2), with the spore body being lanceolate, 13.9-16.5 (15.4 ± 0.7) × 7.1-9.0 (8.3 ± 0.5). Phylogenetic analysis of the SSU rRNA gene placed both Hennegoides flockae and Henneguya marcquenskiae as sisters to each other in a clade containing other Myxozoans known to infect the gills of esocids, percids, and centrarchids. These parasites represent the first reports of Henneguya and Hennegoides from pirate perch, with the latter being the first report of this genus outside of the Asian continent.


Assuntos
Doenças dos Peixes/parasitologia , Myxozoa/isolamento & purificação , Doenças Parasitárias em Animais/parasitologia , Percas/parasitologia , Animais , Sequência de Bases , Teorema de Bayes , Doenças dos Peixes/epidemiologia , Brânquias/parasitologia , Funções Verossimilhança , Fígado/parasitologia , Cadeias de Markov , Microscopia de Interferência/veterinária , Método de Monte Carlo , Myxozoa/classificação , Myxozoa/genética , Doenças Parasitárias em Animais/epidemiologia , Filogenia , Prevalência , RNA Ribossômico/química , RNA Ribossômico/genética , Rios , Esporos/ultraestrutura , Wisconsin/epidemiologia
19.
J Parasitol ; 105(6): 827-839, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31742484

RESUMO

Levisunguis subaequalis Curran, Overstreet, Collins & Benz, 2014 , was recently described from the lungs of the definitive hosts, softshell turtles, Apalone ferox (Schneider, 1783), and Apalone spinifera aspera (Agassiz, 1857) as well as the viscera of an intermediate host, the western mosquitofish, Gambusia affinis (Baird and Girard, 1853). However, the original account lacked molecular data. Furthermore, histological examination of infected host tissues in the original account of L. subaequalis did not reveal any pathological changes in the intermediate host. The present work provides a robust morphological description of the nymph and novel molecular data from the 18S and 28S ribosomal gene regions and the cytochrome c oxidase subunit 1 (COI) mitochondrial gene. Phylogenetic analyses using Bayesian inference and maximum likelihood analysis with concatenated sequence data from these 3 regions, as well as each region individually, placed the turtle pentastomid L. subaequalis as a sister clade to the crocodilian pentastomids of the genus Sebekia Sambon, 1922. While only concatenated phylogenetic analyses agreed with the currently accepted classification of the Eupentastomida and phylogenetic signal assessment indicated that the concatenated data set yielded the most phylogenetic signal, data from more taxa are still needed for robust phylogenetic inferences to be made. The intensity of infection ranged from 2 to 171 nymphs per fish, compared with the highest previously reported intensity of 6. These high-intensity infections with L. subaequalis were characterized by the nymphs occupying 5-50% of the coelomic cavity of G. affinis. However, despite this heavy parasite infection, fish exhibited minimal pathology. Observed pathology was characterized by compression or effacement of organs adjacent to the nymphs, particularly liver, swim bladder, and intestines, as well as the formation of granulomas around shed pentastomid cuticles. Nonetheless, the morphological and molecular data provided in the present work will bolster future efforts to identify this pentastomid in other hosts where pathology may be present in addition to aiding in the advancement of the field of molecular pentastomid systematics.


Assuntos
Ciprinodontiformes/parasitologia , Doenças dos Peixes/parasitologia , Doenças Parasitárias em Animais/parasitologia , Pentastomídeos/genética , Alabama/epidemiologia , Animais , Teorema de Bayes , DNA/genética , DNA/isolamento & purificação , Complexo IV da Cadeia de Transporte de Elétrons/genética , Doenças dos Peixes/epidemiologia , Funções Verossimilhança , Pulmão/parasitologia , Mitocôndrias/enzimologia , Ninfa/anatomia & histologia , Doenças Parasitárias em Animais/epidemiologia , Pentastomídeos/anatomia & histologia , Pentastomídeos/classificação , Filogenia , Prevalência , RNA Ribossômico 18S/genética , RNA Ribossômico 28S/genética , Tartarugas/parasitologia
20.
Syst Parasitol ; 96(9): 767-776, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31721045

RESUMO

A Henneguya sp., morphologically resembling Henneguya nyongensis Fomena & Bouix, 1996, was isolated from the gills of Peter's elephantnose fish, Gnathonemus petersii Günther, imported from Nigeria. Plasmodia were located between lamellae and within the gill epithelium, often leading to lamellar fusion. Although slightly smaller, the myxospores from these fish were morphologically consistent with H. nyongensis. In valvular view, spores are elongate, pyriform with a rounded posterior and tapering caudal processes. Myxospore bodies are 9.6-12.3 (mean 11.2) µm long and 4.0-4.7 (mean 4.3) µm wide. Polar capsules are pyriform, elongate, 4.5-5.2 (4.7) µm long and 1.3-1.6 (1.4) µm wide, with a characteristic neck-like structure at the apical end. Sequence generated for the 18S small subunit rRNA gene did not directly match any sequences available on GenBank, but demonstrated 91% nucleotide similarity to an unpublished Henneguya sp. infecting Mormyrus kannume Forsskål. Herein, the description of H. nyongensis is supplemented with new data on histopathology, molecular characterisation, and expanded host and geographical range.


Assuntos
Cnidários/classificação , Peixe Elétrico/parasitologia , Doenças dos Peixes/parasitologia , Doenças Parasitárias em Animais/parasitologia , Animais , Cnidários/anatomia & histologia , Cnidários/genética , Doenças dos Peixes/patologia , Brânquias/parasitologia , Brânquias/patologia , Nigéria , Doenças Parasitárias em Animais/patologia , RNA Ribossômico 18S/genética , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA