Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
IEEE Trans Biomed Eng ; PP2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728123

RESUMO

INTRODUCTION: Histotripsy is a non-thermal focused ultrasound therapy in development for the non-invasive ablation of cancerous tumors. Intracranial histotripsy has been limited by significant pressure attenuation through the skull, requiring large, complex array transducers to overcome this effect. OBJECTIVE: Recently, a biocompatible, polyolefin-based cranioplasty device was developed to allow ultrasound (US) transmission into the intracranial space with minimal distortion. In this study, we investigated the in vitro feasibility of applying US-guided histotripsy procedures across the prosthesis. METHODS: Pressure waveforms and beam profiles were collected for singleand multi-element histotripsy transducers. Then, high-speed optical images of the bubble cloud with and without the prosthesis were collected in water and tissue-mimicking agarose gel phantoms. Finally, red blood cell (RBC) tissue phantom and excised brain tissue experiments were completed to test the ablative efficacy across the prosthesis. RESULTS: Single element tests revealed increased pressure loss with increasing transducer frequency and increasing transducer-to-prosthesis angle. Array transducer measurements at 1 MHz showed average pressure losses of >50% across the prosthesis. Aberration correction recovered up to 18% of the pressure lost, and high-speed optical imaging in water, agarose gels, and RBC phantoms demonstrated that histotripsy bubble clouds could be generated across the prosthesis at pulse repetition frequencies of 50-500 Hz. Histologic analysis revealed a complete breakdown of brain tissue treated across the prosthesis. Conclusion & Significance: Overall, the results of this study demonstrate that the cranial prosthesis may be used as an acoustic window through which intracranial histotripsy can be applied under US guidance without the need for large transcranial array transducers.

2.
Animals (Basel) ; 14(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612283

RESUMO

Magnetic resonance imaging (MRI) is used pervasively in veterinary practice for the antemortem diagnosis of intracranial tumors. Here, we provide an illustrated summary of the published MRI features of primary and secondary intracranial tumors of dogs and cats, following PRISMA scoping review guidelines. The PubMed and Web of Science databases were searched for relevant records, and input from stakeholders was solicited to select data for extraction. Sixty-seven studies of moderate to low-level evidence quality describing the MRI features of pathologically confirmed canine and feline brain tumors met inclusion criteria. Considerable variability in data inclusion and reporting, as well as low case numbers, prohibited comparative data analyses. Available data support a holistic MRI approach incorporating lesion number, location within the brain, shape, intrinsic signal appearances on multiparametric sequences, patterns of contrast enhancement, and associated secondary changes in the brain to prioritize differential imaging diagnoses, and often allows for accurate presumptive diagnosis of common intracranial tumors. Quantitative MRI techniques show promise for improving discrimination of neoplastic from non-neoplastic brain lesions, as well as differentiating brain tumor types and grades, but sample size limitations will likely remain a significant practical obstacle to the design of robustly powered radiomic studies. For many brain tumor variants, particularly in cats, there remains a need for standardized studies that correlate clinicopathologic and neuroimaging data.

3.
J Vet Intern Med ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509606

RESUMO

BACKGROUND: Neurofilament light chain (NfL) is a frequently used biomarker in humans for both diagnostic and therapeutic monitoring purposes in various neurologic diseases. HYPOTHESIS/OBJECTIVES: It was hypothesized that dogs with diagnosed structural epilepsy (SE) would have a significantly higher serum NfL concentrations compared to dogs with idiopathic epilepsy (IE). The secondary hypothesis was that dogs would have a significantly higher serum NfL concentrations when measured within 7 days after a seizure compared to being seizure-free for at least 30 days. ANIMALS: Fifty client-owned dogs presented to the neurology service for evaluation of seizures were enrolled. Fourteen dogs had SE and 36 dogs had IE. METHODS: Prospective cohort study performed on 52 serum samples obtained for NfL concentration measurement using single molecule array technology. RESULTS: The median serum concentration of NfL in dogs with SE was significantly higher (109 pg/mL; range, 11.4-741.3 pg/mL) than in dogs with IE (17.7 pg/mL; range, 5.8-188 pg/mL; Wilcoxon rank sum test, P = .001). No significant relationship was found between serum NfL concentration and time of sampling in relation to the most recent seizure in dogs with IE. CONCLUSIONS AND CLINICAL IMPORTANCE: Serum NfL may serve as an adjunctive biomarker for the differentiation of SE and IE.

4.
Neurotrauma Rep ; 5(1): 128-138, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38414780

RESUMO

Although many interventions for acute spinal cord injury (SCI) appear promising in experimental models, translation directly from experimental animals to human patients is a large step that can be problematic. Acute SCI occurs frequently in companion dogs and may provide a model to ease translation. Recently, incision of the dura has been highlighted in both research animals and human patients as a means of reducing intraspinal pressure, with a view to improving perfusion of the injured tissue and enhancing functional recovery. Observational clinical data in humans and dogs support the notion that it may also improve functional outcome. Here, we report the results of a multi-center randomized controlled trial of durotomy as an adjunct to traditional decompressive surgery for treatment of severe thoracolumbar SCI caused by acute intervertebral disc herniation in dogs. Sample-size calculation was based on the proportion of dogs recovering ambulation improving from an expected 55% in the traditional surgery group to 70% in the durotomy group. Over a 3.5-year period, we enrolled 140 dogs, of which 128 had appropriate duration of follow-up. Overall, 65 (51%) dogs recovered ambulation. Recovery in the traditional decompression group was 35 of 62 (56%) dogs, and in the durotomy group 30 of 66 (45%) dogs, associated with an odds ratio of 0.643 (95% confidence interval: 0.320-1.292) and z-score of -1.24. This z-score indicates trial futility to reach the target 15% improvement over traditional surgery, and the trial was terminated at this stage. We conclude that durotomy is ineffective in improving functional outcome for severe acute thoracolumbar SCI in dogs. In the future, these data can be compared with similar data from clinical trials on duraplasty in human patients and will aid in determining the predictive validity of the "companion dog model" of acute SCI.

5.
Cancers (Basel) ; 16(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38339315

RESUMO

Neurotropic oncolytic viruses are appealing agents to treat brain tumors as they penetrate the blood-brain barrier and induce preferential cytolysis of neoplastic cells. The pathobiological similarities between human and canine brain tumors make immunocompetent dogs with naturally occurring tumors attractive models for the study of oncolytic virotherapies. In this dose-escalation/expansion study, an engineered Lasota NDV strain targeting the urokinase plasminogen activator system (rLAS-uPA) was administered by repetitive intravenous infusions to 20 dogs with intracranial tumors with the objectives of characterizing toxicities, immunologic responses, and neuroradiological anti-tumor effects of the virus for up to 6 months following treatment. Dose-limiting toxicities manifested as fever, hematologic, and neurological adverse events, and the maximum tolerated dose (MTD) of rLAS-uPA was 2 × 107 pfu/mL. Mild adverse events, including transient infusion reactions, diarrhea, and fever were observed in 16/18 of dogs treated at or below MTD. No infectious virus was recoverable from body fluids. Neutralizing antibodies to rLAS-uPA were present in all dogs by 2 weeks post-treatment, and viral genetic material was detected in post-treatment tumors from six dogs. Tumor volumetric reductions occurred in 2/11 dogs receiving the MTD. Systemically administered rLAS-uPA NDV was safe and induced anti-tumor effects in canine brain tumors, although modifications to evade host anti-viral immunity are needed to optimize this novel therapy.

6.
Vet Comp Oncol ; 22(2): 174-185, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38332673

RESUMO

Meningiomas are the most common feline primary brain tumours, and calvarial hyperostosis (CH) is frequently documented in association with this neoplastic entity. The clinical significance of and mechanisms driving the formation of CH in cats with meningiomas are poorly understood, although tumour invasion into the skull and tumour production of cytokines and enzymes have been implicated as causes of CH in humans. This retrospective study investigated relationships between signalment, MRI or CT imaging features, histopathologic tumour characteristics, alkaline phosphatase (ALP) isoenzyme concentrations, tumour expression of matrix metalloproteinases (MMP)-2, MMP-9, and interleukin-6 (IL-6), and progression free survival times (PFS) following surgical treatment in 27 cats with meningiomas with (n = 15) or without (n = 12) evidence of CH. No significant differences in breed, age, sex, body weight, tumour grade, tumour volume, peritumoral edema burden, ALP isoenzyme concentrations, tumour Ki-67 labelling indices or MMP-2 or MMP-9 expression and activity, or PFS were noted between cats with or without CH. There was a trend towards higher serum (p = .06) and intratumoral (p = .07) concentrations of IL-6 in cats with CH, but these comparisons were not statistically significant. Histologic evidence of tumour invasion into bone was observed in 5/12 (42%) with CH and in no (0/6) cats without CH, although this was not statistically significant (p = .07). Tumour invasion into bone and tumour production of IL-6 may contribute to the formation of meningioma associated CH in cats, although larger studies are required to further substantiate these findings and determine their clinical relevance.


Assuntos
Doenças do Gato , Hiperostose , Imageamento por Ressonância Magnética , Neoplasias Meníngeas , Meningioma , Tomografia Computadorizada por Raios X , Animais , Meningioma/veterinária , Meningioma/diagnóstico por imagem , Meningioma/patologia , Gatos , Doenças do Gato/diagnóstico por imagem , Doenças do Gato/patologia , Imageamento por Ressonância Magnética/veterinária , Feminino , Masculino , Hiperostose/veterinária , Hiperostose/diagnóstico por imagem , Hiperostose/patologia , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/veterinária , Neoplasias Meníngeas/veterinária , Neoplasias Meníngeas/diagnóstico por imagem , Neoplasias Meníngeas/patologia , Neoplasias Meníngeas/metabolismo , Crânio/diagnóstico por imagem , Crânio/patologia , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Interleucina-6/metabolismo
7.
J Vet Intern Med ; 37(4): 1447-1454, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37246729

RESUMO

BACKGROUND: In humans, the T2-weighted (T2W)-fluid-attenuated inversion recovery (FLAIR) mismatch sign (T2FMM) is a specific imaging biomarker for the isocitrate dehydrogenase 1 (IDH1)-mutated, 1p/19q non-codeleted low-grade astrocytomas (LGA). The T2FMM is characterized by a homogeneous hyperintense T2W signal and a hypointense signal with a hyperintense peripheral rim on FLAIR sequences. In gliomas in dogs, the T2FMM has not been described. HYPOTHESES/OBJECTIVES: In dogs with focal intra-axial brain lesions, T2FMM will discriminate gliomas from other lesions. The T2FMM will be associated with the LGA phenotype and presence of microcysts on histopathology. Interobserver agreement for T2FMM magnetic resonance imaging (MRI) features will be high. ANIMALS: One hundred eighty-six dogs with histopathologically diagnosed focal intra-axial lesions on brain MRI including oligodendrogliomas (n = 90), astrocytomas (n = 47), undefined gliomas (n = 9), cerebrovascular accidents (n = 33), and inflammatory lesions (n = 7). METHODS: Two blinded raters evaluated the 186 MRI studies and identified cases with the T2FMM. Histopathologic and immunohistochemical slides of T2FMM cases were evaluated for morphologic features and IDH1-mutations and compared to cases without the T2FMM. Gene expression analyses were performed on a subset of oligodendrogliomas (n = 10) with and without T2FMM. RESULTS: The T2FMM was identified in 14/186 (8%) of MRI studies, and all dogs with T2FMM had oligodendrogliomas (n = 12 low-grade [LGO], n = 2 high-grade [HGO]; P < .001). Microcystic change was significantly associated with the T2FMM (P < .00001). In oligodendrogliomas with T2FMM, IDH1-mutations or specific differentially expressed genes were not identified. CONCLUSION AND CLINICAL IMPORTANCE: The T2FMM can be readily identified on routinely obtained MRI sequences. It is a specific biomarker for oligodendroglioma in dogs, and was significantly associated with non-enhancing LGO.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Doenças do Cão , Glioma , Oligodendroglioma , Humanos , Cães , Animais , Oligodendroglioma/diagnóstico por imagem , Oligodendroglioma/genética , Oligodendroglioma/veterinária , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/veterinária , Estudos Retrospectivos , Isocitrato Desidrogenase/genética , Imageamento por Ressonância Magnética/veterinária , Glioma/diagnóstico por imagem , Glioma/genética , Glioma/veterinária , Astrocitoma/genética , Astrocitoma/veterinária , Mutação , Biomarcadores , Doenças do Cão/diagnóstico por imagem , Doenças do Cão/genética
8.
Front Oncol ; 13: 1171278, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37213298

RESUMO

Background: Irreversible electroporation (IRE) has been previously investigated in preclinical trials as a treatment for intracranial malignancies. Here, we investigate next generation high-frequency irreversible electroporation (H-FIRE), as both a monotherapy and a combinatorial therapy, for the treatment of malignant gliomas. Methods: Hydrogel tissue scaffolds and numerical modeling were used to inform in-vivo H-FIRE pulsing parameters for our orthotopic tumor-bearing glioma model. Fischer rats were separated into five treatment cohorts including high-dose H-FIRE (1750V/cm), low-dose H-FIRE (600V/cm), combinatorial high-dose H-FIRE + liposomal doxorubicin, low-dose H-FIRE + liposomal doxorubicin, and standalone liposomal doxorubicin groups. Cohorts were compared against a standalone tumor-bearing sham group which received no therapeutic intervention. To further enhance the translational value of our work, we characterize the local and systemic immune responses to intracranial H-FIRE at the study timepoint. Results: The median survival for each cohort are as follows: 31 days (high-dose H-FIRE), 38 days (low-dose H-FIRE), 37.5 days (high-dose H-FIRE + liposomal doxorubicin), 27 days (low-dose H-FIRE + liposomal doxorubicin), 20 days (liposomal doxorubicin), and 26 days (sham). A statistically greater overall survival fraction was noted in the high-dose H-FIRE + liposomal doxorubicin (50%, p = 0.044), high-dose H-FIRE (28.6%, p = 0.034), and the low-dose H-FIRE (20%, p = 0.0214) compared to the sham control (0%). Compared to sham controls, brain sections of rats treated with H-FIRE demonstrated significant increases in IHC scores for CD3+ T-cells (p = 0.0014), CD79a+ B-cells (p = 0.01), IBA-1+ dendritic cells/microglia (p = 0.04), CD8+ cytotoxic T-cells (p = 0.0004), and CD86+ M1 macrophages (p = 0.01). Conclusions: H-FIRE may be used as both a monotherapy and a combinatorial therapy to improve survival in the treatment of malignant gliomas while also promoting the presence of infiltrative immune cells.

9.
Front Vet Sci ; 9: 1039745, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36330152

RESUMO

The blood-brain barrier (BBB) presents a formidable obstacle to the effective delivery of systemically administered pharmacological agents to the brain, with ~5% of candidate drugs capable of effectively penetrating the BBB. A variety of biomaterials and therapeutic delivery devices have recently been developed that facilitate drug delivery to the brain. These technologies have addressed many of the limitations imposed by the BBB by: (1) designing or modifying the physiochemical properties of therapeutic compounds to allow for transport across the BBB; (2) bypassing the BBB by administration of drugs via alternative routes; and (3) transiently disrupting the BBB (BBBD) using biophysical therapies. Here we specifically review colloidal drug carrier delivery systems, intranasal, intrathecal, and direct interstitial drug delivery methods, focused ultrasound BBBD, and pulsed electrical field induced BBBD, as well as the key features of BBB structure and function that are the mechanistic targets of these approaches. Each of these drug delivery technologies are illustrated in the context of their potential clinical applications and limitations in companion animals with naturally occurring intracranial diseases.

10.
J Med Device ; 16(4): 041014, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36353365

RESUMO

Convection-enhanced delivery (CED) is a drug delivery technique used to deliver therapeutics directly to the brain and is a continually evolving technique to treat glioblastoma. Early versions of CED have proven to result in inadequate drug volume dispersed (Vd), increasing the likelihood of tumor recurrence. Fiber optic microneedle devices (FMDs) with the ability to deliver fluid and thermal energy simultaneously have shown an ability to increase Vd, but FMDs have historically had low light transmission efficiency. In this study, we present a new fabrication method, solid fiber inside capillary (SFIC) FMD, and a modified fusion splicing (FS) method with the goal of increasing light delivery efficiency. The modified FS FMD resulted in an increase in light transmission efficiency between 49% and 173% compared to previous prototypes. However, the FS FMD resulted in significantly lower transmission efficiencies compared to the SFIC FMD (p ≤ 0.04) and FS FMDs perform much worse when light-absorptive materials, like black dye, are placed in the bore. The light absorption of a candidate cytotoxic agent, QUAD-CTX, appear to be similar to water, and light delivery through FS FMDs filled with QUAD-CTX achieves a transmission efficiency of 85.6 ± 5.4%. The fabrication process of the SFIC FMDs results in extremely fragile FMDs. Therefore, the use of a modified FS FMD fabrication process appears to be better suited for balancing the desire to increase light transmission efficiency while retaining a sturdy FMD construction.

11.
12.
Biomedicines ; 10(6)2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35740406

RESUMO

Glioblastoma is the deadliest malignant brain tumor. Its location behind the blood-brain barrier (BBB) presents a therapeutic challenge by preventing effective delivery of most chemotherapeutics. H-FIRE is a novel tumor ablation method that transiently disrupts the BBB through currently unknown mechanisms. We hypothesized that H-FIRE mediated BBB disruption (BBBD) occurs via cytoskeletal remodeling and alterations in tight junction (TJ) protein regulation. Intracranial H-FIRE was delivered to Fischer rats prior to sacrifice at 1-, 24-, 48-, 72-, and 96 h post-treatment. Cytoskeletal proteins and native and ubiquitinated TJ proteins (TJP) were evaluated using immunoprecipitation, Western blotting, and gene-expression arrays on treated and sham control brain lysates. Cytoskeletal and TJ protein expression were further evaluated with immunofluorescent microscopy. A decrease in the F/G-actin ratio, decreased TJP concentrations, and increased ubiquitination of TJP were observed 1-48 h post-H-FIRE compared to sham controls. By 72-96 h, cytoskeletal and TJP expression recovered to pretreatment levels, temporally corresponding with increased claudin-5 and zonula occludens-1 gene expression. Ingenuity pathway analysis revealed significant dysregulation of claudin genes, centered around claudin-6 in H-FIRE treated rats. In conclusion, H-FIRE is capable of permeating the BBB in a spatiotemporal manner via cytoskeletal-mediated TJP modulation. This minimally invasive technology presents with applications for localized and long-lived enhanced intracranial drug delivery.

13.
J Biomech Eng ; 144(11)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35656789

RESUMO

Convection-enhanced delivery (CED) has been extensively studied for drug delivery to the brain due to its inherent ability to bypass the blood-brain barrier. Unfortunately, CED has also been shown to inadequately distribute therapeutic agents over a large enough targeted tissue volume to be clinically beneficial. In this study, we explore the use of constant pressure infusions in addition to controlled catheter movement as a means to increase volume dispersed (Vd) in an agarose gel brain tissue phantom. Constant flow rate and constant pressure infusions were conducted with a stationary catheter, a catheter retracting at a rate of 0.25 mm/min, and a catheter retracting at a rate of 0.5 mm/min. The 0.25 mm/min and 0.5 mm/min retracting constant pressure catheters resulted in significantly larger Vd compared to any other group, with a 105% increase and a 155% increase compared to the stationary constant flow rate catheter, respectively. These same constant pressure retracting infusions resulted in a 42% and 45% increase in Vd compared to their constant flow rate counterparts. Using constant pressure infusions coupled with controlled catheter movement appears to have a beneficial effect on Vd in agarose gel. Furthermore, constant pressure infusions reveal the fundamental limitation of flow-driven infusions in both controlled catheter movement protocols as well as in stationary protocols where maximum infusion volume can never be reliably obtained.


Assuntos
Catéteres , Convecção , Encéfalo , Sistemas de Liberação de Medicamentos/métodos , Sefarose
14.
Front Vet Sci ; 9: 871029, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35498741

RESUMO

Three juvenile dogs presented with an acute onset of paraspinal hyperesthesia and/or neurologic deficits. These dogs underwent anesthesia for MRI and additional diagnostics. The thoracolumbar MRI in Dog 1 revealed an accumulation of T2-weighted (T2W) hyperintense, T1-weighted (T1W) iso- to hyperintense, contrast enhancing extradural material. The differential diagnoses were meningitis with secondary hemorrhage or empyema or late subacute hemorrhage. The initial cervical MRI in Dog 2 revealed T1W meningeal contrast enhancement suspected to be secondary to meningitis. A repeat MRI following neurologic decline after CSF sampling revealed a large area of T2W and T1W hyperintensity between fascial planes of the cervical musculature as well as T2W iso- to hyperintense and T1W iso- to hypointense extradural material at the level of C1 consistent with hemorrhage. The cervical MRI in Dog 3 revealed T2W hyperintense and T1W iso- to hypointense extradural compressive material consistent with hemorrhage. Dogs 1 and 2 underwent CSF sampling and developed complications, including subcutaneous hematoma and vertebral canal hemorrhage. Dog 3 underwent surgical decompression, which revealed a compressive extradural hematoma. In each case, a hemophilia panel including factor VIII concentration confirmed the diagnosis of hemophilia A. Dog 1 had a resolution of clinical signs for ~5 months before being euthanized from gastrointestinal hemorrhage. Dog 2 was euthanized due to neurologic decompensation following CSF sampling. Dog 3 did well for 2 weeks after surgery but was then lost to follow-up. This case series provides information on clinical signs, MRI findings, and outcome in 3 juvenile dogs with hemophilia A that developed neurologic deficits or paraspinal hyperesthesia secondary to spontaneous or iatrogenic vertebral canal hemorrhage. Hemophilia A should be considered as a differential in any young dog presenting with an acute onset of hyperesthesia with or without neurologic deficits. This diagnosis should be prioritized in young male dogs that have other evidence of hemorrhage on physical exam.

15.
J Vet Intern Med ; 36(3): 1066-1074, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35274379

RESUMO

BACKGROUND: Brain tumor therapeutic responses can be quantified from magnetic resonance images (MRI) using 1- (1D) and 2-dimensional (2D) linear and volumetric methods, but few studies in dogs compare these techniques. HYPOTHESES: Linear methods will be obtained faster, but have less agreement than volumetric measurements. Therapeutic response agreement will be highest with the total T2W tumor volumetric (TTV) method. Therapeutic response at 6-weeks will correlate with overall survival (OS). ANIMALS: Forty-six dogs with intracranial gliomas. METHODS: Prospective study. Three raters measured tumors using 1D and 2D linear, TTV, and contrast-enhancing volumetric (CEV) techniques on 143 brain MRI to determine agreement between methods, define therapeutic responses, and assess relations with OS. RESULTS: Raters performed 1D the fastest (2.9 ± 0.57 minutes) and CEV slowest (17.8 ± 6.2 minutes). Inter- and intraobserver agreements were excellent (intraclass correlations ≥.91) across methods. Correlations between linear (1D vs 2D; ρ > .91) and volumetric (TTV vs CEV; ρ > .73) methods were stronger than linear to volumetric comparisons (ρ range, .26-.59). Incorporating clinical and imaging data resulted in fewer discordant therapeutic responses across methods. Dogs having partial tumor responses at 6 weeks had a lower death hazard than dogs with stable or progressive disease when assessed using 2D, CEV, and TTV (hazard ration 2.1; 95% confidence interval, 1.22-3.63; P = .008). CONCLUSIONS AND CLINICAL IMPORTANCE: One-dimensional, 2D, CEV, and TTV are comparable for determining therapeutic response. Given the simplicity, universal applicability, and superior performance of the TTV, we recommend its use to standardize glioma therapeutic response criteria.


Assuntos
Neoplasias Encefálicas/veterinária , Doenças do Cão/diagnóstico por imagem , Glioma/veterinária , Animais , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Doenças do Cão/tratamento farmacológico , Cães , Glioma/diagnóstico por imagem , Glioma/tratamento farmacológico , Imageamento por Ressonância Magnética/veterinária , Estudos Prospectivos , Resultado do Tratamento
16.
J Vet Intern Med ; 36(2): 694-701, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35170074

RESUMO

BACKGROUND: Seizures in the early postoperative period after intracranial surgery may affect outcome in dogs. OBJECTIVES: To determine the incidence of early postoperative seizures (EPS) in dogs with brain tumors, identify specific risk factors for EPS, and determine if EPS affects outcome. ANIMALS: Eighty-eight dogs that underwent 125 intracranial surgeries for diagnosis and treatment of rostrotentorial brain tumors. METHODS: Retrospective cohort study. All patients with a diagnosis of rostrotentorial brain tumor from 2006 to 2020 were included. Early postoperative seizures were diagnosed by observation of seizure activity within 14 days of neurosurgery. Previously diagnosed structural epilepsy, perioperative anticonvulsant drug (ACD) use, magnetic resonance imaging (MRI), and tumor characteristics were evaluated. Outcome measures included neurologic and nonneurologic complications, duration of hospitalization, and survival to discharge. RESULTS: Dogs with rostrotentorial brain tumors had EPS after 16/125 (12.8%) neurosurgical procedures (95% confidence interval [CI], 7%-19%). Presence of previous structural epilepsy was not associated with EPS risk (P = 1). Perioperative ACD use also was not associated with EPS (P = .06). Dogs with EPS had longer hospitalization (P < .001), were more likely to have neurologic complications postsurgery (P = .01), and were less likely to survive to discharge (P = .01). CONCLUSIONS AND CLINICAL IMPORTANCE: It is difficult to predict which dogs are at risk of EPS because the presence of previous structural epilepsy and the use of perioperative ACDs was not associated with EPS. However, seizures in the early postoperative period are clinically important because affected dogs had prolonged hospitalization, more neurologic complications, and decreased short-term survival.


Assuntos
Neoplasias Encefálicas , Doenças do Cão , Animais , Neoplasias Encefálicas/complicações , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/veterinária , Doenças do Cão/epidemiologia , Doenças do Cão/patologia , Doenças do Cão/cirurgia , Cães , Humanos , Incidência , Complicações Pós-Operatórias/veterinária , Período Pós-Operatório , Estudos Retrospectivos , Fatores de Risco , Convulsões/epidemiologia , Convulsões/etiologia , Convulsões/veterinária
17.
Res Vet Sci ; 143: 74-80, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34995824

RESUMO

The fiberoptic microneedle device (FMD) is a fused-silica microcatheter capable of co-delivery of fluids and light that has been developed for convection-enhanced delivery and photothermal treatments of glioblastoma. Here we investigate the biocompatibility of FMD fragments chronically implanted in the rat brain in the context of evaluating potential mechanical device failure. Fischer rats underwent craniectomy procedures for sham control (n = 16) or FMD implantation (n = 16) within the brain. Rats were examined daily after implantation, and at 14, 30, 90, and 180 days after implantation were evaluated via computed tomography of the head, hematologic and blood biochemical profiling, and necropsy examinations. Clinical signs of illness and distant implant migration were not observed, and blood analyses were not different between control and FMD implanted groups at any time. Mild inflammatory and astrogliotic reactions localized to the treatment sites within the brain were observed in all groups, more robust in FMD implanted groups compared to controls at days 30 and 90, and decreased in severity over days 90-180 of the study. One rat developed a chronic, superficial surgical site pyogranuloma attributed to the FMD silica implant. Chronically implanted FMD fragments were well tolerated clinically and resulted in anticipated mild, localized brain tissue responses that were comparable with other implanted biomaterials in the brain.


Assuntos
Materiais Biocompatíveis , Agulhas , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia , Próteses e Implantes/efeitos adversos , Próteses e Implantes/veterinária , Ratos
18.
Artigo em Inglês | MEDLINE | ID: mdl-34478363

RESUMO

New therapeutic strategies are direly needed in the fight against cancer. Over the last decade, several tumor ablation strategies have emerged as stand-alone or combination therapies. Histotripsy is the first completely noninvasive, nonthermal, and nonionizing tumor ablation method. Histotripsy can produce consistent and rapid ablations, even near critical structures. Additional benefits include real-time image guidance, high precision, and the ability to treat tumors of any predetermined size and shape. Unfortunately, the lack of clinically and physiologically relevant preclinical cancer models is often a significant limitation with all focal tumor ablation strategies. The majority of studies testing histotripsy for cancer treatment have focused on small animal models, which have been critical in moving this field forward and will continue to be essential for providing mechanistic insight. While these small animal models have notable translational value, there are significant limitations in terms of scale and anatomical relevance. To address these limitations, a diverse range of large animal models and spontaneous tumor studies in veterinary patients have emerged to complement existing rodent models. These models and veterinary patients are excellent at providing realistic avenues for developing and testing histotripsy devices and techniques designed for future use in human patients. Here, we provide a review of animal models used in preclinical histotripsy studies and compare histotripsy ablation in these models using a series of original case reports across a broad spectrum of preclinical animal models and spontaneous tumors in veterinary patients.


Assuntos
Técnicas de Ablação , Ablação por Ultrassom Focalizado de Alta Intensidade , Neoplasias , Animais , Humanos , Modelos Animais , Neoplasias/terapia
19.
J Vet Intern Med ; 36(1): 179-189, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34897811

RESUMO

BACKGROUND: Orthostatic tremor (OT) is a rare movement disorder characterized by high-frequency (>12 Hz) involuntary, rhythmic, sinusoidal movements affecting predominantly the limbs while standing. OBJECTIVE: To describe the signalment, presenting complaints, phenotype, diagnostic findings, treatment, and outcome of a large sample of dogs with OT. ANIMALS: Sixty dogs diagnosed with OT based on conscious electromyography. METHODS: Multicenter retrospective case series study. Dogs were included if they had a conscious electromyography consistent with muscle discharge frequency >12 Hz while standing. RESULTS: Fifty-three cases were diagnosed with primary OT (POT). Giant breed dogs represented most cases (83%; 44/53). Most dogs (79%; 42/53) were younger than 2 years of age at onset of signs, except for Retrievers which were all older than 3.5 years of age. The most common presenting complaints were pelvic limb tremors while standing (85%; 45/53) and difficulty when rising or sitting down (45%; 24/53). Improvement of clinical signs occurred in most dogs (85%; 45/53) treated medically with phenobarbital, primidone, gabapentin, pregabalin or clonazepam, but it was mostly partial rather than complete. Orthostatic tremor-plus was seen in 7 dogs that had concurrent neurological diseases. CONCLUSIONS AND CLINICAL IMPORTANCE: Primary OT is a progressive disease of young, purebred, giant/large-breed dogs, which appears to begin later in life in Retrievers. Primary OT apparently responds partially to medications. Orthostatic tremor-plus exists in dogs and can be concomitant or associated with other neurological diseases.


Assuntos
Doenças do Cão , Tremor , Animais , Tontura/veterinária , Doenças do Cão/tratamento farmacológico , Cães , Eletromiografia/veterinária , Estudos Retrospectivos , Tremor/tratamento farmacológico , Tremor/veterinária
20.
Bioelectrochemistry ; 144: 108001, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34844040

RESUMO

Improved therapeutics for malignant brain tumors are urgently needed. High-frequency irreversible electroporation (H-FIRE) is a minimally invasive, nonthermal tissue ablation technique, which utilizes high-frequency, bipolar electric pulses to precisely kill tumor cells. The mechanisms of H-FIRE-induced tumor cell death and potential for cellular recovery are incompletely characterized. We hypothesized that tumor cells treated with specific H-FIRE electric field doses can survive and retain proliferative capacity. F98 glioma and LL/2 Lewis lung carcinoma cell suspensions were treated with H-FIRE to model primary and metastatic brain cancer, respectively. Cell membrane permeability, apoptosis, metabolic viability, and proliferative capacity were temporally measured using exclusion dyes, condensed chromatin staining, WST-8 fluorescence, and clonogenic assays, respectively. Both tumor cell lines exhibited dose-dependent permeabilization, with 1,500 V/cm permitting and 3,000 V/cm inhibiting membrane recovery 24 h post-treatment. Cells treated with 1,500 V/cm demonstrated significant and progressive recovery of apoptosis and metabolic activity, in contrast to cells treated with higher H-FIRE doses. Cancer cells treated with recovery-permitting doses of H-FIRE maintained while those treated with recovery-inhibiting doses lost proliferative capacity. Taken together, our data suggest that H-FIRE induces reversible and irreversible cellular damage in a dose-dependent manner, and the presence of dose-dependent recovery mechanisms permits tumor cell proliferation.


Assuntos
Neoplasias Encefálicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA