RESUMO
OBJECTIVES: To evaluate the effect of short-term inhalational exposure to nanoparticles released during dental composite grinding on oxidative stress and antioxidant capacity markers. MATERIALS AND METHODS: Twenty-four healthy volunteers were examined before and after exposure in dental workshop. They spent 76.8 ± 0.7 min in the testing room during grinding of dental nanocomposites. The individual exposure to aerosol particles in each participant´s breathing zones was monitored using a personal nanoparticle sampler (PENS). Exhaled breath condensate (EBC), blood, and urine samples were collected pre- and post-exposure to measure one oxidative stress marker, i.e., thiobarbituric acid reactive substances (TBARS), and two biomarkers of antioxidant capacity, i.e., ferric-reducing antioxidant power (FRAP) and reduced glutathione (GSH) by spectrophotometry. Spirometry and fractional exhaled nitric oxide (FeNO) were used to evaluate the effect of acute inhalational exposure. RESULTS: Mean mass of dental nanocomposite ground away was 0.88 ± 0.32 g. Average individual doses of respirable particles and nanoparticles measured by PENS were 380 ± 150 and 3.3 ± 1.3 µg, respectively. No significant increase of the post-exposure oxidative stress marker TBARS in EBC and plasma was seen. No decrease in antioxidant capacity biomarkers FRAP and GSH in EBC post-exposure was seen, either. Post-exposure, conjunctival hyperemia was seen in 62.5% volunteers; however, no impairment in spirometry or FeNO results was observed. No correlation of any biomarker measured with individual exposure was found, however, several correlations with interfering factors (age, body mass index, hypertension, dyslipidemia, and environmental pollution parameters) were seen. CONCLUSIONS: This study, using oxidative stress biomarker and antioxidant capacity biomarkers in biological fluids of volunteers during the grinding of dental nanocomposites did not prove a negative effect of this intense short-term exposure. However, further studies are needed to evaluate oxidative stress in long-term exposure of both stomatologists and patients and diverse populations with varying health statuses.
RESUMO
Aim: Today, there is a lack of research studies concerning human acute exposure to nanoparticles (NPs). Our investigation aimed to simulate real-world acute inhalation exposure to NPs released during work with dental nanocomposites in a dental office or technician laboratory. Methods: Blood samples from female volunteers were processed before and after inhalation exposure. Transcriptomic mRNA and miRNA expression changes were analyzed. Results: We detected large interindividual variability, 90 significantly deregulated mRNAs, and 4 miRNAs when samples of participants before and after dental nanocomposite grinding were compared. Conclusion: The results suggest that inhaled dental NPs may present an occupational hazard to human health, as indicated by the changes in the processes related to oxidative stress, synthesis of eicosanoids, and cell division.
What is this article about? We searched for a possible impact of acute inhalation exposure to nanoparticles (NPs) released during the grinding of dental nanocomposites used for teeth reconstruction. The exposure design utilized in our study simulated the acute exposure of the dental staff to the NPs. Our research fills the gaps in knowledge in the field of acute human inhalation exposure to dental nanocomposites.What were the results? Results indicate that the impact of exposure to NPs is dependent on the style of working as well as on the interindividual biological variability among study subjects. Changes in expression levels of genes associated with an increase of oxidative stress, synthesis of eicosanoids (signaling molecules related to e.g., immune responses), and cell division were detected.What do the results of the study mean? All the observed changes may contribute to the pathogenesis of neurodegenerative disorders, carcinogenesis, or problems during pregnancy. Occupational exposure to inhaled NPs, including those generated in dental practice can pose a significant health risk, and protective measures when working with these materials should be considered. More research is needed to compare our results with chronic (long-term) exposure to similar materials to show the hazards related to their inhalation.
Assuntos
Exposição por Inalação , MicroRNAs , Nanocompostos , Transcriptoma , Humanos , Feminino , Nanocompostos/química , Transcriptoma/efeitos dos fármacos , Adulto , MicroRNAs/genética , Exposição por Inalação/efeitos adversos , RNA Mensageiro/genética , Exposição Ocupacional/efeitos adversos , Nanopartículas/química , Estresse Oxidativo/efeitos dos fármacosRESUMO
Nanoparticles (NPs) have become an important part of everyday life, including their application in dentistry. Aside from their undoubted benefits, questions regarding their risk to human health, and/or genome have arisen. However, studies concerning cytogenetic effects are completely absent. A group of women acutely exposed to an aerosol released during dental nanocomposite grinding was sampled before and after the work. Exposure monitoring including nano (PM0.1) and respirable (PM4) fractions was performed. Whole-chromosome painting for autosomes #1, #4, and gonosome X was applied to estimate the pattern of cytogenetic damage including structural and numerical alterations. The results show stable genomic frequency of translocations (FG/100), in contrast to a significant 37.8% (p<0.05) increase of numerical aberrations caused by monosomies (p<0.05), but not trisomies. Monosomies were mostly observed for chromosome X. In conclusion, exposure to nanocomposites in stomatology may lead to an increase in numerical aberrations which can be dangerous for dividing cells.
Assuntos
Nanocompostos , Exposição Ocupacional , Humanos , Feminino , Nanocompostos/toxicidade , Nanocompostos/química , Pessoa de Meia-Idade , Exposição Ocupacional/efeitos adversos , Aberrações Cromossômicas , Adulto , Materiais Dentários/toxicidade , Coloração CromossômicaRESUMO
Aim: To find a practical biomonitoring method for researchers exposed to nanoparticles causing oxidative stress. Methods: In a continuation of a study in 2016-2018, biological samples (plasma, urine and exhaled breath condensate [EBC]) were collected in 2019-2020 from 43 researchers (13.8 ± 3.0 years of exposure) and 45 controls. Antioxidant status was assessed using glutathione (GSH) and ferric-reducing antioxidant power, while oxidative stress was measured as thiobarbituric acid reactive substances, all using spectrophotometric methods. Researchers' personal nanoparticle exposure was monitored. Results: Plasma GSH was elevated in researchers both before and after exposure (p < 0.01); postexposure plasma GSH correlated with nanoparticle exposure, and GSH in EBC increased. Conclusion: The results suggest adaptation to chronic exposure to nanoparticles, as monitored by plasma and EBC GSH.
What is this study about? Identifying markers of oxidative stress and/or adaptation to oxidation stress could offer tools for monitoring exposure to nanoparticles in exposed researchers. In this study, we question whether these markers correlate with their personal exposure during the shift. What were the results? We found that exposure to nanoparticles correlated with the antioxidant marker glutathione, which is higher in workers who are already pre-exposed. What do the results mean? This study suggests that the researchers have adapted to nanoparticle exposure and are ready to combat oxidative stress. However, the similarity with increased markers of oxidative stress from asbestos and silica exposure, including nucleic acid oxidation, previously found in these researchers highlights the need for further research in this area to better understand and prevent potential future effects.
Assuntos
Antioxidantes , Nanopartículas , Estresse Oxidativo , Glutationa , Substâncias Reativas com Ácido Tiobarbitúrico , Testes Respiratórios/métodos , Biomarcadores/metabolismoRESUMO
Air pollution is a dominant environmental exposure factor with significant health consequences. Unexpectedly, research in a heavily polluted region of the Czech Republic, with traditional heavy industry, revealed repeatedly the lowest frequency of micronuclei in the season with the highest concentrations of air pollutants including carcinogenic benzo[a]pyrene (B[a]P). Molecular findings have been collected for more than 10 years from various locations of the Czech Republic, with differing quality of ambient air. Preliminary conclusions have suggested adaptation of the population from the polluted locality (Ostrava, Moravian-Silesian Region (MSR)) to chronic air pollution exposure. In this study we utilize the previous findings and, for the first time, investigate micronuclei (MN) frequency by type: (i) centromere positive (CEN+) MN, representing chromosomal losses, and (ii) centromere negative (CEN-) MN representing chromosomal breaks. As previous results indicated differences between populations in the expression of XRCC5, a gene involved in the non-homologous end-joining (NHEJ) repair pathway, possible variations in epigenetic settings in this gene were also investigated. This new research was conducted in two seasons in the groups from two localities with different air quality levels (Ostrava (OS) and Prague (PG)). The obtained new results show significantly lower frequencies of chromosomal breaks in the OS subjects, related to the highest air pollution levels (p < 0.001). In contrast, chromosomal losses were comparable between both groups. In addition, significantly lower DNA methylation was found in 14.3% of the analyzed CpG loci of XRCC5 in the population from OS. In conclusion, the epigenetic adaptation (hypomethylation) in XRCC5 involved in the NHEJ repair pathway in the population from the polluted region, was suggested as a reason for the reduced level of chromosomal breaks. Further research is needed to explore the additional mechanisms, including genetic adaptation.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Quebra Cromossômica , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Exposição Ambiental , Aberrações Cromossômicas , Epigênese Genética , República TchecaRESUMO
The maternal diet during pregnancy affects neonatal health status. The objective of this study was to assess the nutritional quality of the maternal diet, and its contamination by persistent organic pollutants (POPs), in pregnant women living in two areas of the Czech Republic with different levels of air pollution, and subsequently to assess the relationship of these two factors with birth weight and neonatal oxidative stress. To determine the level of oxidative stress, 8-isoprostane concentrations in umbilical cord plasma were measured. The overall nutritional quality of the maternal diet was not optimal. Of the nutritional factors, protein intake proved to be the most significant showing a positive relationship with birth weight, and a negative relationship with the oxidative stress of newborns. Dietary contamination by persistent organic pollutants was low and showed no statistically significant relationship with birth weight. Only one of the 67 analyzed POPs, namely the insecticide dichlorodiphenyltrichloroethane (DDT), showed a statistically significant positive relationship with the level of neonatal oxidative stress.
RESUMO
We aimed to identify the variables that modify levels of oxidatively damaged DNA and lipid peroxidation in subjects living in diverse localities of the Czech Republic (a rural area, a metropolitan locality, and an industrial region). The sampling of a total of 126 policemen was conducted twice in two sampling seasons. Personal characteristics, concentrations of particulate matter of aerodynamic diameter <2.5 µm and benzo[a]pyrene in the ambient air, activities of antioxidant mechanisms (superoxide dismutase, catalase, glutathione peroxidase, and antioxidant capacity), levels of pro-inflammatory cytokines (TNF-α, IL-1ß, and IL-6), concentrations of persistent organic pollutants in blood plasma, and urinary levels of polycyclic aromatic hydrocarbon metabolites were investigated as parameters potentially affecting the markers of DNA oxidation (8-oxo-7,8-dihydro-2'-deoxyguanosine) and lipid peroxidation (15-F2t-isoprostane). The levels of oxidative stress markers mostly differed between the localities in the individual sampling seasons. Multivariate linear regression analysis revealed IL-6, a pro-inflammatory cytokine, as a factor with the most pronounced effects on oxidative stress parameters. The role of other variables, including environmental pollutants, was minor. In conclusion, our study showed that oxidative damage to macromolecules was affected by processes related to inflammation; however, we did not identify a specific environmental factor responsible for the pro-inflammatory response in the organism.
Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Antioxidantes/análise , Biomarcadores , República Tcheca , DNA , Poluentes Ambientais/análise , Poluentes Ambientais/toxicidade , Humanos , Interleucina-6 , Estresse Oxidativo , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidadeRESUMO
DNA methylation is the most studied epigenetic mechanism that regulates gene expression, and it can serve as a useful biomarker of prior environmental exposure and future health outcomes. This study focused on DNA methylation profiles in a human cohort, comprising 125 nonsmoking city policemen (sampled twice), living and working in three localities (Prague, Ostrava and Ceske Budejovice) of the Czech Republic, who spent the majority of their working time outdoors. The main characterization of the localities, differing by major sources of air pollution, was defined by the stationary air pollution monitoring of PM2.5, B[a]P and NO2. DNA methylation was analyzed by a genome-wide microarray method. No season-specific DNA methylation pattern was discovered; however, we identified 13,643 differentially methylated CpG loci (DML) for a comparison between the Prague and Ostrava groups. The most significant DML was cg10123377 (log2FC = -1.92, p = 8.30 × 10-4) and loci annotated to RPTOR (total 20 CpG loci). We also found two hypomethylated loci annotated to the DNA repair gene XRCC5. Groups of DML annotated to the same gene were linked to diabetes mellitus (KCNQ1), respiratory diseases (PTPRN2), the dopaminergic system of the brain and neurodegenerative diseases (NR4A2). The most significant possibly affected pathway was Axon guidance, with 86 potentially deregulated genes near DML. The cluster of gene sets that could be affected by DNA methylation in the Ostrava groups mainly includes the neuronal functions and biological processes of cell junctions and adhesion assembly. The study demonstrates that the differences in the type of air pollution between localities can affect a unique change in DNA methylation profiles across the human genome.
Assuntos
Poluentes Atmosféricos/efeitos adversos , Poluição do Ar/efeitos adversos , Metilação de DNA/efeitos dos fármacos , Exposição Ambiental/efeitos adversos , Polícia , Adulto , República Tcheca , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
In this biomonitoring study, we evaluated the concentrations of 8 polychlorinated biphenyls (PCBs), 11 organochlorinated pesticides (OCPs), 33 brominated flame retardants (BFRs), 7 novel brominated and chlorinated flame retardants (novel FRs) and 30 per- and polyfluoroalkylated substances (PFAS) in human serum samples (n = 274). A total of 89 persistent organic pollutants (POPs) were measured in blood serum samples of city policemen living in three large cities and their adjacent areas (Ostrava, Prague, and Ceske Budejovice) in the Czech Republic. All samples were collected during the year 2019 in two sampling periods (spring and autumn). The identification/quantification of PCBs, OCPs, BFRs, novel FRs and PFAS was performed by means of gas chromatography coupled to (tandem) mass spectrometry (GC-MS/(MS)) and ultra-high performance liquid chromatography coupled to triple quadrupole tandem mass spectrometry (UHPLC-MS/MS). The most frequently detected pollutants were perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluorooctanesulfonate (PFOS), perfluorohexanesulfonate (PFHxS), 2,2',3,4,4',5'-hexachlorobiphenyl (CB 138), 2,2',4,4',5,5'-hexachlorobiphenyl (CB 153), 2,2',3,3',4,4',5-heptachlorobiphenyl (CB 170), 2,2',3,4,4',5,5'-heptachlorobiphenyl (CB 180), hexachlorobenzene (HCB), and p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) quantified in 100% of serum samples. In the serum samples, the concentrations of determined POPs were in the range of 0.108-900 ng g-1 lipid weight (lw) for PCBs, 0.106-1016 ng g-1 lw for OCPs, <0.1-618 ng g-1 lw for FRs and <0.01-18.3 ng mL-1 for PFAS, respectively. Locality, sampling season, and age were significantly associated with several POP concentrations. One of the important conclusions was that within the spring sampling period, statistically significant higher concentrations of CB 170 and CB 180 were observed in the samples from Ostrava (industrial area) compared to Prague and Ceske Budejovice. Older policemen had higher concentrations of five PCBs and two OCPs in blood serum.
Assuntos
Poluentes Ambientais , Hidrocarbonetos Clorados , Praguicidas , Bifenilos Policlorados , Monitoramento Biológico , Cidades , República Tcheca , Monitoramento Ambiental , Poluentes Ambientais/análise , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Hidrocarbonetos Clorados/análise , Praguicidas/análise , Bifenilos Policlorados/análise , Soro/química , Espectrometria de Massas em TandemRESUMO
A DNA methylation pattern represents an original plan of the function settings of individual cells and tissues. The basic strategies of its development and changes during the human lifetime are known, but the details related to its modification over the years on an individual basis have not yet been studied. Moreover, current evidence shows that environmental exposure could generate changes in DNA methylation settings and, subsequently, the function of genes. In this study, we analyzed the effect of chronic exposure to nanoparticles (NP) in occupationally exposed workers repeatedly sampled in four consecutive years (2016-2019). A detailed methylation pattern analysis of 14 persons (10 exposed and 4 controls) was performed on an individual basis. A microarray-based approach using chips, allowing the assessment of more than 850 K CpG loci, was used. Individual DNA methylation patterns were compared by principal component analysis (PCA). The results show the shift in DNA methylation patterns in individual years in all the exposed and control subjects. The overall range of differences varied between the years in individual persons. The differences between the first and last year of examination (a three-year time period) seem to be consistently greater in the NP-exposed subjects in comparison with the controls. The selected 14 most differently methylated cg loci were relatively stable in the chronically exposed subjects. In summary, the specific type of long-term exposure can contribute to the fixing of relevant epigenetic changes related to a specific environment as, e.g., NP inhalation.
Assuntos
Metilação de DNA , Epigênese Genética , Regulação da Expressão Gênica/efeitos dos fármacos , Nanopartículas/efeitos adversos , Doenças Profissionais/epidemiologia , Exposição Ocupacional/efeitos adversos , Adulto , Estudos de Casos e Controles , Ilhas de CpG , República Tcheca/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Profissionais/induzido quimicamente , Doenças Profissionais/genéticaRESUMO
The evaluation of the frequency of micronuclei (MN) is a broadly utilised approach in in vitro toxicity testing. Nevertheless, the specific properties of nanomaterials (NMs) give rise to concerns regarding the optimal methodological variants of the MN assay. In bronchial epithelial cells (BEAS-2B), we tested the genotoxicity of five types of NMs (TiO2: NM101, NM103; SiO2: NM200; Ag: NM300K, NM302) using four variants of MN protocols, differing in the time of exposure and the application of cytochalasin-B combined with the simultaneous and delayed co-treatment with NMs. Using transmission electron microscopy, we evaluated the impact of cytochalasin-B on the transport of NMs into the cells. To assess the behaviour of NMs in a culture media for individual testing conditions, we used dynamic light scattering measurement. The presence of NMs in the cells, their intracellular aggregation and dispersion properties were comparable when tests with or without cytochalasin-B were performed. The genotoxic potential of various TiO2 and Ag particles differed (NM101 < NM103 and NM302 < NM300K, respectively). The application of cytochalasin-B tended to increase the percentage of aberrant cells. In conclusion, the comparison of the testing strategies revealed that the level of DNA damage induced by NMs is affected by the selected methodological approach. This fact should be considered in the interpretation of the results of genotoxicity tests.
RESUMO
Road traffic emissions consist of gaseous components, particles of various sizes, and chemical compounds that are bound to them. Exposure to vehicle emissions is implicated in the etiology of inflammatory respiratory disorders. We investigated the inflammation-related markers in human bronchial epithelial cells (BEAS-2B) and a 3D model of the human airways (MucilAir™), after exposure to complete emissions and extractable organic matter (EOM) from particles generated by ordinary gasoline (E5), and a gasoline-ethanol blend (E20; ethanol content 20% v/v). The production of 22 lipid oxidation products (derivatives of linoleic and arachidonic acid, AA) and 45 inflammatory molecules (cytokines, chemokines, growth factors) was assessed after days 1 and 5 of exposure, using LC-MS/MS and a multiplex immunoassay, respectively. The response observed in MucilAir™ exposed to E5 gasoline emissions, characterized by elevated levels of pro-inflammatory AA metabolites (prostaglandins) and inflammatory markers, was the most pronounced. E20 EOM exposure was associated with increased levels of AA metabolites with anti-inflammatory effects in this cell model. The exposure of BEAS-2B cells to complete emissions reduced lipid oxidation, while E20 EOM tended to increase concentrations of AA metabolite and chemokine production; the impacts on other inflammatory markers were limited. In summary, complete E5 emission exposure of MucilAir™ induces the processes associated with the pro-inflammatory response. This observation highlights the potential negative health impacts of ordinary gasoline, while the effects of alternative fuel are relatively weak.
Assuntos
Poluentes Atmosféricos , Gasolina , Poluentes Atmosféricos/análise , Cromatografia Líquida , Gasolina/análise , Gasolina/toxicidade , Humanos , Inflamação/induzido quimicamente , Lipídeos , Material Particulado , Extratos Vegetais , Espectrometria de Massas em Tandem , Emissões de Veículos/análise , Emissões de Veículos/toxicidadeRESUMO
Small non-coding RNA molecules (miRNAs) play an important role in the epigenetic regulation of gene expression. As these molecules have been repeatedly implicated in human cancers, they have been suggested as biomarkers of the disease. Additionally, miRNA levels have been shown to be affected by environmental pollutants, including airborne contaminants. In this review, we searched the current literature for miRNAs involved in lung cancer, as well as miRNAs deregulated as a result of exposure to air pollutants. We then performed a synthesis of the data and identified those molecules commonly deregulated under both conditions. We detected a total of 25 miRNAs meeting the criteria, among them, miR-222, miR-21, miR-126-3p, miR-155 and miR-425 being the most prominent. We propose these miRNAs as biomarkers of choice for the identification of human populations exposed to air pollution with a significant risk of developing lung cancer.
RESUMO
Gasoline engine emissions have been classified as possibly carcinogenic to humans and represent a significant health risk. In this study, we used MucilAir™, a three-dimensional (3D) model of the human airway, and BEAS-2B, cells originating from the human bronchial epithelium, grown at the air-liquid interface to assess the toxicity of ordinary gasoline exhaust produced by a direct injection spark ignition engine. The transepithelial electrical resistance (TEER), production of mucin, and lactate dehydrogenase (LDH) and adenylate kinase (AK) activities were analyzed after one day and five days of exposure. The induction of double-stranded DNA breaks was measured by the detection of histone H2AX phosphorylation. Next-generation sequencing was used to analyze the modulation of expression of the relevant 370 genes. The exposure to gasoline emissions affected the integrity, as well as LDH and AK leakage in the 3D model, particularly after longer exposure periods. Mucin production was mostly decreased with the exception of longer BEAS-2B treatment, for which a significant increase was detected. DNA damage was detected after five days of exposure in the 3D model, but not in BEAS-2B cells. The expression of CYP1A1 and GSTA3 was modulated in MucilAir™ tissues after 5 days of treatment. In BEAS-2B cells, the expression of 39 mRNAs was affected after short exposure, most of them were upregulated. The five days of exposure modulated the expression of 11 genes in this cell line. In conclusion, the ordinary gasoline emissions induced a toxic response in MucilAir™. In BEAS-2B cells, the biological response was less pronounced, mostly limited to gene expression changes.
Assuntos
Brônquios/citologia , Células Epiteliais/efeitos dos fármacos , Emissões de Veículos/toxicidade , Adenilato Quinase/metabolismo , Células Cultivadas , Quebras de DNA de Cadeia Dupla , Impedância Elétrica , Células Epiteliais/metabolismo , Humanos , L-Lactato Desidrogenase/metabolismo , Mucinas/metabolismo , Testes de Toxicidade/métodos , TranscriptomaRESUMO
Human data concerning exposure to nanoparticles are very limited, and biomarkers for monitoring exposure are urgently needed. In a follow-up of a 2016 study in a nanocomposites plant, in which only exhaled breath condensate (EBC) was examined, eight markers of oxidative stress were analyzed in three bodily fluids, i.e., EBC, plasma and urine, in both pre-shift and post-shift samples in 2017 and 2018. Aerosol exposures were monitored. Mass concentration in 2017 was 0.351 mg/m3 during machining, and 0.179 and 0.217 mg/m3 during machining and welding, respectively, in 2018. In number concentrations, nanoparticles formed 96%, 90% and 59%, respectively. In both years, pre-shift elevations of 50.0% in EBC, 37.5% in plasma and 6.25% in urine biomarkers were observed. Post-shift elevation reached 62.5% in EBC, 68.8% in plasma and 18.8% in urine samples. The same trend was observed in all biological fluids. Individual factors were responsible for the elevation of control subjects' afternoon vs. morning markers in 2018; all were significantly lower compared to those of workers. Malondialdehyde levels were always acutely shifted, and 8-hydroxy-2-deoxyguanosine levels best showed chronic exposure effect. EBC and plasma analysis appear to be the ideal fluids for bio-monitoring of oxidative stress arising from engineered nanomaterials. Potential late effects need to be targeted and prevented, as there is a similarity of EBC findings in patients with silicosis and asbestosis.
RESUMO
Disruption of telomere length (TL) homeostasis in peripheral blood lymphocytes has been previously assessed as a potential biomarker of breast cancer (BC) risk. The present study addressed the relationship between lymphocyte TL (LTL), prognosis and clinicopathological features in the BC patients since these associations are insufficiently explored at present. LTL was measured in 611 BC patients and 154 healthy controls using the monochrome multiplex quantitative Polymerase Chain Reaction assay. In addition, we genotyped nine TL-associated single-nucleotide polymorphisms that had been identified through genome-wide association studies. Our results showed that the patients had significantly (P = 0.001, Mann-Whitney U-test) longer LTL [median (interquartile range); 1.48 (1.22-1.78)] than the healthy controls [1.27 (0.97-1.82)]. Patients homozygous (CC) for the common allele of hTERT rs2736108 or the variant allele (CC) of hTERC rs16847897 had longer LTL. The latter association remained statistically significant in the recessive genetic model after the Bonferroni correction (P = 0.004, Wilcoxon two-sample test). We observed no association between LTL and overall survival or relapse-free survival of the patients. LTL did not correlate with cancer staging based on Union for International Cancer Control (UICC), The tumor node metastasis (TNM) staging system classification, tumour grade or molecular BC subtypes. Overall, we observed an association between long LTL and BC disease and an association of the hTERC rs16847897 CC genotype with increased LTL. However, no association between LTL, clinicopathological features and survival of the patients was found.
Assuntos
Neoplasias da Mama/genética , RNA/genética , Telomerase/genética , Homeostase do Telômero/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Biomarcadores Tumorais/genética , Neoplasias da Mama/sangue , Neoplasias da Mama/patologia , Feminino , Predisposição Genética para Doença/genética , Variação Genética/genética , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Leucócitos/patologia , Leucócitos Mononucleares , Metástase Linfática/genética , Metástase Linfática/patologia , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Polimorfismo de Nucleotídeo Único/genéticaRESUMO
Background and objectives: The impact of cesarean and vaginal delivery on cognitive development was analyzed in 5 year old children. Materials and Methods: Two cohorts of 5 year old children born in the years 2013 and 2014 in Karvina (Northern Moravia) and Ceske Budejovice (Southern Bohemia) were studied for their cognitive development related to vaginal (n = 117) and cesarean types of delivery (n = 51). The Bender Visual Motor Gestalt Test (BG test) and the Raven Colored Progressive Matrices (RCPM test) were used as psychological tests. Results: In the comparison of vaginal delivery vs. cesarean section, the children delivered by cesarean section scored lower and, therefore, achieved poorer performance in cognitive tests compared to those born by vaginal delivery, as shown in the RCPM (p < 0.001) and in the BG test (p < 0.001). When mothers' education level was considered, the children whose mothers achieved a university degree scored higher in both the RCPM test (p < 0.001) and the BG test (p < 0.01) compared to the children of mothers with lower secondary education. When comparing mothers with a university degree to those with higher secondary education, there was a significant correlation between level of education and score achieved in the RCPM test (p < 0.001), but not in the BG test. Conclusions: According to our findings, the mode of delivery seems to have a significant influence on performance in psychological cognitive tests in 5 year old children in favor of those who were born by vaginal delivery. Since cesarean-born children scored notably below vaginally born children, it appears possible that cesarean delivery may have a convincingly adverse effect on children's further cognitive development.
Assuntos
Cesárea , Parto Obstétrico , Pré-Escolar , Feminino , Humanos , Mães , Testes Neuropsicológicos , Gravidez , Testes PsicológicosRESUMO
The exposure of living organisms to environmental stress triggers defensive responses resulting in the activation of protective processes. Whenever the exposure occurs at low doses, defensive effects overwhelm the adverse effects of the exposure; this adaptive situation is referred to as "hormesis". Environmental, physical, and nutritional hormetins lead to the stimulation and strengthening of the maintenance and repair systems in cells and tissues. Exercise, heat, and irradiation are examples of physical hormetins, which activate heat shock-, DNA repair-, and anti-oxidative-stress responses. The health promoting effect of many bio-actives in fruits and vegetables can be seen as the effect of mildly toxic compounds triggering this adaptive stimulus. Numerous studies indicate that living organisms possess the ability to adapt to adverse environmental conditions, as exemplified by the fact that DNA damage and gene expression profiling in populations living in the environment with high levels of air pollution do not correspond to the concentrations of pollutants. The molecular mechanisms of the hormetic response include modulation of (a) transcription factor Nrf2 activating the synthesis of glutathione and the subsequent protection of the cell; (b) DNA methylation; and (c) microRNA. These findings provide evidence that hormesis is a toxicological event, occurring at low exposure doses to environmental stressors, having the benefit for the maintenance of a healthy status.
Assuntos
Adaptação Fisiológica , Epigênese Genética , Hormese , Estresse Fisiológico , Animais , Dano ao DNA , Regulação da Expressão Gênica , Humanos , Estresse OxidativoRESUMO
This study presents a toxicological evaluation of two types of carbon dots (CD), similar in size (<10 nm) but differing in surface charge. Whole-genome mRNA and miRNA expression (RNAseq), as well as gene-specific DNA methylation changes, were analyzed in human embryonic lung fibroblasts (HEL 12469) after 4 h and 24 h exposure to concentrations of 10 and 50 µg/mL (for positive charged CD; pCD) or 10 and 100 µg/mL (for negative charged CD, nCD). The results showed a distinct response for the tested nanomaterials (NMs). The exposure to pCD induced the expression of a substantially lower number of mRNAs than those to nCD, with few commonly differentially expressed genes between the two CDs. For both CDs, the number of deregulated mRNAs increased with the dose and exposure time. The pathway analysis revealed a deregulation of processes associated with immune response, tumorigenesis and cell cycle regulation, after exposure to pCD. For nCD treatment, pathways relating to cell proliferation, apoptosis, oxidative stress, gene expression, and cycle regulation were detected. The expression of miRNAs followed a similar pattern: more pronounced changes after nCD exposure and few commonly differentially expressed miRNAs between the two CDs. For both CDs the pathway analysis based on miRNA-mRNA interactions, showed a deregulation of cancer-related pathways, immune processes and processes involved in extracellular matrix interactions. DNA methylation was not affected by exposure to any of the two CDs. In summary, although the tested CDs induced distinct responses on the level of mRNA and miRNA expression, pathway analyses revealed a potential common biological impact of both NMs independent of their surface charge.
Assuntos
Carbono/farmacologia , Metilação de DNA/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Apoptose/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Células Cultivadas , Metilação de DNA/genética , Matriz Extracelular/genética , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Humanos , MicroRNAs/genética , Neoplasias/genética , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , RNA Mensageiro/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genéticaRESUMO
The extensive development of nanotechnologies and nanomaterials poses a number of questions to toxicologists about the potential health risks of exposure to nanoparticles (NP). In this study, we analysed DNA damage in the leukocytes of 20 workers who were long-term exposed (18 ± 10 years) to NP in their working environment. Blood samples were collected in September 2016, before and after a shift, to assess (i) the chronic effects of NP on DNA (pre-shift samples) and (ii) the acute effects of exposure during the shift (the difference between pre- and post-shift samples). The samples from matched controls were taken in parallel with workers before the shift. Leukocytes were isolated from heparinised blood on a Ficoll gradient. The enzyme-modified comet assay (DNA formamido-pyrimidine-glycosylase and endonuclease III) demonstrated a considerable increase of both single- and double-strand breaks in DNA (DNA-SB) and oxidised bases when compared with the controls (2.4× and 2×, respectively). Acute exposure induced a further increase of DNA-SB. The welding and smelting of nanocomposites represented a higher genotoxic risk than milling and grinding of nanocomposite surfaces. Obesity appeared to be a factor contributing to an increased risk of oxidative damage to DNA. The data also indicated a higher susceptibility of males vs. females to NP exposure. The study was repeated in September 2017. The results exhibited similar trend, but the levels of DNA damage in the exposed subjects were lower compared to previous year. This was probably associated with lower exposure to NP in consequence of changes in nanomaterial composition and working operations. The further study involving also monitoring of personal exposures to NP is necessary to identify (i) the main aerosol components responsible for genotoxic effects in workers handling nanocomposites and (ii) the primary cause of gender differences in response to NP action.