Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomater Adv ; 137: 212820, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35929257

RESUMO

Healing of injured tendon is a major clinical challenge in orthopaedic medicine, due to the poor regenerative potential of this tissue. Two-dimensional nanomaterials, as versatile scaffolds, have shown a great potential to support, trigger and accelerate the tendon regeneration. However, weak mechanical properties, poor functionality and low biocompatibility of these scaffolds as well as post-surgery infections are main drawbacks that limit their development in the higher clinical phases. In this work, a series of hydrogels consisting polyglycerol functionalized reduced graphene oxide (PG), polyglycerol-functionalized molybdenum disulfide (PMoS2) and PG/PMoS2 hybrid within the gelatin matrix are formulated in new scaffolds and their ability for the healing of injured Achilles tendon, due to their high mechanical properties, low toxicity, cell proliferation enhancement, and antibacterial activities is investigated. While scaffolds containing PG and PMoS2 showed a moderate tendon regeneration and anti-inflammatory effect, respectively, their hybridization into PG/PMoS2 demonstrated a synergistic healing efficiency. Along the same line, an accelerated return of tendon function with low peritendinous adhesion and low cross-sectional area in animal group treated with scaffold containing PG/PMoS2 was observed. Taking advantage of the high biocompatibility, high strength, straightforward construction and fast tendon regeneration, PG/PMoS2 can be used as a new scaffold for the future tissue engineering.


Assuntos
Tendão do Calcâneo , Grafite , Traumatismos dos Tendões , Tendão do Calcâneo/cirurgia , Animais , Grafite/farmacologia , Hidrogéis/farmacologia , Molibdênio , Traumatismos dos Tendões/cirurgia , Alicerces Teciduais
2.
Langmuir ; 36(24): 6706-6715, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32441938

RESUMO

While noncovalent interactions at two-dimensional nanobiointerfaces are extensively investigated, less knowledge about covalent interactions at this interface is available. In this work, boronic acid-functionalized 2D MoS2 was synthesized and its covalent multivalent interactions with bacteria and nematodes were investigated. Polymerization of glycidol by freshly exfoliated MoS2 and condensation of 2,5-thiophenediylbisboronic acid on the produced platform resulted in boronic acid-functionalized 2D MoS2. The destructive interactions between 2D MoS2 and bacteria as well as nematodes were significantly amplified by boronic acid functional groups. Because of the high antibacterial and antinematodal activities of boronic acid-functionalized 2D MoS2, its therapeutic efficacy for diabetic wound healing was investigated. The infected diabetic wounds were completely healed 10 days after treatment with boronic acid-functionalized 2D MoS2, and a normal structure for recovered tissues including different layers of skin, collagen, and blood vessels was detected.


Assuntos
Ácidos Borônicos , Molibdênio , Antibacterianos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA