RESUMO
In a range of animal species, exposure of the brain to general anaesthesia without surgery during early infancy may adversely affect its neural and cognitive development. The mechanisms mediating this are complex but include an increase in brain cell death. In humans, attempts to link adverse cognitive development to infantile anaesthesia exposure have yielded ambiguous results. One caveat that may influence the interpretation of human studies is that infants are not exposed to general anaesthesia without surgery, raising the possibility that surgery itself, may contribute to adverse cognitive development. Using piglets, we investigated whether a minor surgical procedure increases cell death and disrupts neuro-developmental and cognitively salient gene transcription in the neonatal brain. We randomly assigned neonatal male piglets to a group who received 6h of 2% isoflurane anaesthesia or a group who received an identical anaesthesia plus 15 mins of surgery designed to replicate an inguinal hernia repair. Compared to anesthesia alone, surgery-induced significant increases in cell death in eight areas of the brain. Using RNAseq data derived from all 12 piglets per group we also identified significant changes in the expression of 181 gene transcripts induced by surgery in the cingulate cortex, pathway analysis of these changes suggests that surgery influences the thrombin, aldosterone, axonal guidance, B cell, ERK-5, eNOS and GABAA signalling pathways. This suggests a number of novel mechanisms by which surgery may influence neural and cognitive development independently or synergistically with the effects of anaesthesia.
Assuntos
Anestesia Geral/efeitos adversos , Anestésicos Inalatórios/efeitos adversos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Hérnia Inguinal/complicações , Herniorrafia/efeitos adversos , Isoflurano/efeitos adversos , Aldosterona/genética , Aldosterona/metabolismo , Anestésicos Inalatórios/administração & dosagem , Animais , Animais Recém-Nascidos , Linfócitos B/imunologia , Linfócitos B/metabolismo , Morte Celular/efeitos dos fármacos , Perfilação da Expressão Gênica , Giro do Cíngulo/efeitos dos fármacos , Giro do Cíngulo/metabolismo , Giro do Cíngulo/patologia , Hérnia Inguinal/cirurgia , Isoflurano/administração & dosagem , Masculino , Proteína Quinase 7 Ativada por Mitógeno/genética , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/metabolismo , Rede Nervosa/patologia , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Análise de Sequência de RNA , Transdução de Sinais , Suínos , Trombina/genética , Trombina/metabolismoRESUMO
Exposure of the brain to general anesthesia during early infancy may adversely affect its neural and cognitive development. The mechanisms mediating this are complex, incompletely understood and may be sexually dimorphic, but include developmentally inappropriate apoptosis, inflammation and a disruption to cognitively salient gene expression. We investigated the effects of a 6h isoflurane exposure on cell death, microglial activation and gene expression in the male neonatal piglet brain. Piglets (n = 6) were randomised to: (i) naive controls or (ii) 6h isoflurane. Cell death (TUNEL and caspase-3) and microglial activation were recorded in 7 brain regions. Changes in gene expression (microarray and qPCR) were assessed in the cingulate cortex. Electroencephalography (EEG) was recorded throughout. Isoflurane anesthesia induced significant increases in cell death in the cingulate and insular cortices, caudate nucleus, thalamus, putamen, internal capsule, periventricular white matter and hippocampus. Dying cells included both neurons and oligodendrocytes. Significantly, microglial activation was observed in the insula, pyriform, hippocampus, internal capsule, caudate and thalamus. Isoflurane induced significant disruption to the expression of 79 gene transcripts, of these 26 are important for the control of transcription and 23 are important for the mediation of neural plasticity, memory formation and recall. Our observations confirm that isoflurane increases apoptosis and inflammatory responses in the neonatal piglet brain but also suggests novel additional mechanisms by which isoflurane may induce adverse neural and cognitive development by disrupting the expression of genes mediating activity dependent development of neural circuits, the predictive adaptive responses of the brain, memory formation and recall.
Assuntos
Encéfalo/efeitos dos fármacos , Cognição/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Isoflurano/farmacologia , Microglia/citologia , Microglia/efeitos dos fármacos , Anestésicos Gerais/farmacologia , Animais , Animais Recém-Nascidos , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiologia , Morte Celular/efeitos dos fármacos , Substância Cinzenta/citologia , Substância Cinzenta/efeitos dos fármacos , Substância Cinzenta/crescimento & desenvolvimento , Substância Cinzenta/fisiologia , Masculino , Suínos , Fatores de Tempo , Substância Branca/citologia , Substância Branca/efeitos dos fármacos , Substância Branca/crescimento & desenvolvimento , Substância Branca/fisiologiaRESUMO
Remote ischemic postconditioning (RIPostC) is a promising therapeutic intervention whereby brief episodes of ischemia/reperfusion of one organ (limb) mitigate damage in another organ (brain) that has experienced severe hypoxia-ischemia. Our aim was to assess whether RIPostC is protective following cerebral hypoxia-ischemia in a piglet model of neonatal encephalopathy (NE) using magnetic resonance spectroscopy (MRS) biomarkers and immunohistochemistry. After hypoxia-ischemia (HI), 16 Large White female newborn piglets were randomized to: (i) no intervention (n = 8); (ii) RIPostC - with four, 10-min cycles of bilateral lower limb ischemia/reperfusion immediately after HI (n = 8). RIPostC reduced the hypoxic-ischemic-induced increase in white matter proton MRS lactate/N acetyl aspartate (p = 0.005) and increased whole brain phosphorus-31 MRS ATP (p = 0.039) over the 48 h after HI. Cell death was reduced with RIPostC in the periventricular white matter (p = 0.03), internal capsule (p = 0.002) and corpus callosum (p = 0.021); there was reduced microglial activation in corpus callosum (p = 0.001) and more surviving oligodendrocytes in corpus callosum (p = 0.029) and periventricular white matter (p = 0.001). Changes in gene expression were detected in the white matter at 48 h, including KATP channel and endothelin A receptor. Immediate RIPostC is a potentially safe and promising brain protective therapy for babies with NE with protection in white but not grey matter.
Assuntos
Substância Cinzenta/patologia , Hipóxia-Isquemia Encefálica/terapia , Pós-Condicionamento Isquêmico/métodos , Extremidade Inferior/irrigação sanguínea , Substância Branca/patologia , Trifosfato de Adenosina/metabolismo , Animais , Animais Recém-Nascidos , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Biomarcadores/metabolismo , Mapeamento Encefálico , Modelos Animais de Doenças , Eletroencefalografia , Expressão Gênica , Substância Cinzenta/irrigação sanguínea , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/metabolismo , Hipóxia-Isquemia Encefálica/diagnóstico por imagem , Hipóxia-Isquemia Encefálica/metabolismo , Hipóxia-Isquemia Encefálica/patologia , Imuno-Histoquímica , Canais KATP/genética , Ácido Láctico/metabolismo , Espectroscopia de Ressonância Magnética , Receptor de Endotelina A/genética , Suínos , Substância Branca/irrigação sanguínea , Substância Branca/diagnóstico por imagem , Substância Branca/metabolismoRESUMO
The relationship between cerebral autoregulation (CA) and the neurotoxic effects of anaesthesia with and without surgery is investigated. Newborn piglets were randomly assigned to receive either 6 h of anaesthesia (isoflurane) or the same with an additional hour of minor surgery. The effect of the spontaneous changes in mean arterial blood pressure (MABP) on the cerebral haemodynamics (oxy- and deoxy-haemoglobin, HbO2 and Hb) was measured using transverse broadband near-infrared spectroscopy (NIRS). A marker for impaired CA, concordance between MABP and intravascular oxygenation (HbD = HbO2 - Hb) in the ultra-low frequency domain (0.0018-0.0083 Hz), was assessed using coherence analysis. Presence of CA impairment was not significant but found to increase with surgical exacerbation. The impairment did not correlate with histological outcome (presence of cell death, apoptosis and microglial activation in the brain).
Assuntos
Anestesia , Encéfalo/fisiologia , Procedimentos Cirúrgicos Operatórios , Animais , Animais Recém-Nascidos , Encéfalo/irrigação sanguínea , Espectroscopia de Luz Próxima ao Infravermelho , SuínosRESUMO
The giardiacidal efficacy of simple disinfecting materials, ie lemon juice, vinifer, and vinegar, for uncooked foods with Giardia cysts was investigated to help travelers in Giardia-endemic areas. The cysts were obtained from stools of individuals with Giardia intestinalis infection by modified sucrose gradient procedure. A pooled batch of 3 x 10(4)/ml Giardia cysts was made from all specimens. The cysts were kept at 4 degrees C until use. Before each experiment, the number of cysts was determined by hemocytometer. Two sets of Eppendorf tubes were used for the experiments, one set at 4 degrees C and one at 24 degrees C. One thousand microliters each of lemon juice, vinifer, or vinegar was poured into each tube, and 1,000 microl of Giardia cysts were added. Variables were disinfectant materials, temperature, and time of exposure. Cyst viability 140 was determined by eosin inclusion procedure. Viability of at least 250 cysts in each tube at 0, 0.5, 1, 2 and 3 hours after the beginning of the experiments was determined. The mean giardiacidal activity at 4 degrees C after 3 hours for lemon juice, vinifer, and vinegar was 18.9, 12.8, and 28.4%, and at 24 degrees C, 28.3, 16.2, and 40.6%, respectively. In conclusion, the giardiacidal activity of vinegar was more than the other materials, and as exposure time and temperature increased, giardiacidal activity also increased; the highest giardiacidal activity of vinegar was at 3-hours exposure at 24 degrees C.