Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Brain Res Bull ; 205: 110816, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37972899

RESUMO

Focal and diffuse cerebral damages occur in Multiple Sclerosis (MS) that promotes profound shifts in local and global structural connectivity parameters, mainly derived from diffusion tensor imaging. Most of the reconstruction analyses have applied conventional tracking algorithms largely based on the controversial streamline count. For a more credible explanation of the diffusion MRI signal, we used convex optimization modeling for the microstructure-informed tractography2 (COMMIT2) framework. All multi-shell diffusion data from 40 healthy controls (HCs) and 40 relapsing-remitting MS (RRMS) patients were transformed into COMMIT2-weighted matrices based on the Schefer-200 parcels atlas (7 networks) and 14 bilateral subcortical regions. The success of the classification process between MS and healthy state was efficiently predicted by the left DMN-related structures and visual network-associated pathways. Additionally, the lesion volume and age of onset were remarkably correlated with the components of the left DMN. Using complementary approaches such as global metrics revealed differences in WM microstructural integrity between MS and HCs (efficiency, strength). Our findings demonstrated that the cutting-edge diffusion MRI biomarkers could hold the potential for interpreting brain abnormalities in a more distinctive way.


Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Substância Branca , Humanos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Imagem de Tensor de Difusão/métodos , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética
2.
Psychiatry Res Neuroimaging ; 336: 111730, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37944426

RESUMO

Most of tractography studies on insomnia disorder (ID) have reported decreased structural connectivity between cortical and subcortical structures. Tractography based on standard diffusion tensor imaging (DTI) can generate high number of false-positive streamlines connections between gray matter regions. In the present study, we employed the convex optimization modeling for microstructure informed tractography-2 (COMMIT2) to improve the accuracy of the reconstructed whole-brain connectome and filter implausible brain connections in 28 patients with ID and compared with 27 healthy controls. Then, we used NBS-predict (a prediction-based extension to the network-based statistic method) in the COMMIT2-weighted connectome. Our results revealed decreased structural connectivity between subregions of the left somatomotor, ventral attention, frontoparietal, dorsal attention and default mode networks in the insomnia group. Moreover, there is a negative correlation between sleep efficiency and structural connectivity within the left frontoparietal, visual, default mode network, limbic, dorsal attention, right dorsal attention as well as right default mode networks. By comparing with standard connectivity analysis, we showed that by removing of false-positive streamlines connections after COMMIT2 filtering, abnormal structural connectivity was reduced in patients with ID compared to controls. Our results demonstrate the importance of improving the accuracy of tractography for understanding structural connectivity networks in ID.


Assuntos
Conectoma , Distúrbios do Início e da Manutenção do Sono , Humanos , Imagem de Tensor de Difusão/métodos , Distúrbios do Início e da Manutenção do Sono/diagnóstico por imagem , Encéfalo , Substância Cinzenta , Conectoma/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA