Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nucleic Acids Res ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38808669

RESUMO

Chromatin three-dimensional (3D) organization inside the cell nucleus determines the separation of euchromatin and heterochromatin domains. Their segregation results in the definition of active and inactive chromatin compartments, whereby the local concentration of associated proteins, RNA and DNA results in the formation of distinct subnuclear structures. Thus, chromatin domains spatially confined in a specific 3D nuclear compartment are expected to share similar epigenetic features and biochemical properties, in terms of accessibility and solubility. Based on this rationale, we developed the 4f-SAMMY-seq to map euchromatin and heterochromatin based on their accessibility and solubility, starting from as little as 10 000 cells. Adopting a tailored bioinformatic data analysis approach we reconstruct also their 3D segregation in active and inactive chromatin compartments and sub-compartments, thus recapitulating the characteristic properties of distinct chromatin states. A key novelty of the new method is the capability to map both the linear segmentation of open and closed chromatin domains, as well as their compartmentalization in one single experiment.

2.
Curr Opin Cell Biol ; 88: 102376, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38810318

RESUMO

Living organisms can detect and respond to physical forces at the cellular level. The pathways that transmit these forces to the nucleus allow cells to react quickly and consistently to environmental changes. Mechanobiology involves the interaction between physical forces and biological processes and is crucial for driving embryonic development and adapting to environmental cues during adulthood. Molecular studies have shown that cells can sense mechanical signals directly through membrane receptors linked to the cytoskeleton or indirectly through biochemical cascades that can influence gene expression for environmental adaptation. This review will explore the role of epigenetic modifications, emphasizing the 3D genome architecture and nuclear structures as responders to mechanical stimuli, which ensure cellular memory and adaptability. Understanding how mechanical cues are transduced and regulate cell functioning, governing processes such as cell programming and reprogramming, is essential for advancing our knowledge of human diseases.


Assuntos
Cromatina , Mecanotransdução Celular , Humanos , Cromatina/metabolismo , Animais , Epigênese Genética
3.
Curr Top Dev Biol ; 158: 375-406, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38670713

RESUMO

The proper functioning of skeletal muscles is essential throughout life. A crucial crosstalk between the environment and several cellular mechanisms allows striated muscles to perform successfully. Notably, the skeletal muscle tissue reacts to an injury producing a completely functioning tissue. The muscle's robust regenerative capacity relies on the fine coordination between muscle stem cells (MuSCs or "satellite cells") and their specific microenvironment that dictates stem cells' activation, differentiation, and self-renewal. Critical for the muscle stem cell pool is a fine regulation of chromatin organization and gene expression. Acquiring a lineage-specific 3D genome architecture constitutes a crucial modulator of muscle stem cell function during development, in the adult stage, in physiological and pathological conditions. The context-dependent relationship between genome structure, such as accessibility and chromatin compartmentalization, and their functional effects will be analysed considering the improved 3D epigenome knowledge, underlining the intimate liaison between environmental encounters and epigenetics.


Assuntos
Cromatina , Cromatina/metabolismo , Cromatina/genética , Animais , Humanos , Músculo Esquelético/citologia , Músculo Esquelético/crescimento & desenvolvimento , Diferenciação Celular , Células-Tronco/citologia , Células-Tronco/metabolismo , Epigênese Genética , Desenvolvimento Muscular , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/fisiologia
4.
Methods Mol Biol ; 2655: 125-146, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37212994

RESUMO

The regulation of chromatin structure depends on a dynamic, multiple mechanisms that modulate gene expression and constitute the epigenome. The Polycomb group (PcG) of proteins are epigenetic factors involved in the transcriptional repression. Among their multilevel, chromatin-associated functions, PcG proteins mediate the establishment and maintenance of higher-order structures at target genes, allowing the transmission of transcriptional programs throughout the cell cycle.In the nucleus, PcG proteins localize close to the pericentric heterochromatin forming microscopically foci, called Polycomb bodies. Here, to visualize the tissue-specific PcG distribution in the aorta, dorsal skin and hindlimb muscles, we combine a fluorescence-activated cell sorter (FACS)-based method with an immunofluorescence staining.


Assuntos
Cromatina , Proteínas de Drosophila , Animais , Camundongos , Proteínas do Grupo Polycomb/genética , Cromatina/metabolismo , Heterocromatina/metabolismo , Núcleo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Músculo Esquelético/metabolismo
6.
J Clin Invest ; 130(5): 2408-2421, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31999646

RESUMO

Lamin A is a component of the inner nuclear membrane that, together with epigenetic factors, organizes the genome in higher order structures required for transcriptional control. Mutations in the lamin A/C gene cause several diseases belonging to the class of laminopathies, including muscular dystrophies. Nevertheless, molecular mechanisms involved in the pathogenesis of lamin A-dependent dystrophies are still largely unknown. The polycomb group (PcG) of proteins are epigenetic repressors and lamin A interactors, primarily involved in the maintenance of cell identity. Using a murine model of Emery-Dreifuss muscular dystrophy (EDMD), we show here that lamin A loss deregulated PcG positioning in muscle satellite stem cells, leading to derepression of non-muscle-specific genes and p16INK4a, a senescence driver encoded in the Cdkn2a locus. This aberrant transcriptional program caused impairment in self-renewal, loss of cell identity, and premature exhaustion of the quiescent satellite cell pool. Genetic ablation of the Cdkn2a locus restored muscle stem cell properties in lamin A/C-null dystrophic mice. Our findings establish a direct link between lamin A and PcG epigenetic silencing and indicate that lamin A-dependent muscular dystrophy can be ascribed to intrinsic epigenetic dysfunctions of muscle stem cells.


Assuntos
Epigênese Genética , Lamina Tipo A/biossíntese , Distrofia Muscular Animal/metabolismo , Distrofia Muscular de Emery-Dreifuss/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Proteínas Repressoras/metabolismo , Transcrição Gênica , Animais , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Lamina Tipo A/genética , Camundongos , Camundongos Knockout , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/patologia , Distrofia Muscular de Emery-Dreifuss/genética , Distrofia Muscular de Emery-Dreifuss/patologia , Proteínas do Grupo Polycomb/genética , Proteínas Repressoras/genética
8.
BMC Emerg Med ; 18(1): 61, 2018 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-30594135

RESUMO

BACKGROUND: During the past three decades conflicting evidences have been published on the use of non-invasive ventilation (NIV) in patients with acute cardiogenic pulmonary edema (ACPE). The aim of this study is to describe the management of acute respiratory failure (ARF) due to ACPE in twelve Italian emergency departments (EDs). We evaluated prevalence, characteristics and outcomes of ACPE patients treated with oxygen therapy, continuous positive airway pressure (CPAP) or Bi-level positive airway pressure (BiPAP) on admission to the EDs. METHODS: In this multicenter, prospective, observational study, consecutive adult patients with ACPE were enrolled in 12 EDs in Italy from May 2009 to December 2013. Three study groups were identified according to the initial respiratory treatment: patients receiving oxygen therapy, those treated with CPAP and those treated with BiPAP. Treatment failure was evaluated as study outcome. RESULTS: We enrolled 1293 patients with acute cardiogenic pulmonary edema. 273 (21%) began with oxygen, 788 (61%) with CPAP and 232 (18%) with BiPAP. One out of four patient who began with oxygen was subsequently switched to NIV and initial treatment with oxygen therapy had an odds ratio for treatment failure of 3.65 (95% CI: 2.55-5.23, p < 0.001). CONCLUSIONS: NIV seems to be the first choice for treatment of ARF due to ACPE, showing high clinical effectiveness and representing a rescue option for patients not improving with conventional oxygen therapy.


Assuntos
Doença Aguda , Ventilação não Invasiva , Edema Pulmonar/complicações , Insuficiência Respiratória/etiologia , Insuficiência Respiratória/terapia , Idoso , Idoso de 80 Anos ou mais , Estudos de Avaliação como Assunto , Feminino , Insuficiência Cardíaca , Humanos , Itália/epidemiologia , Masculino , Ventilação não Invasiva/métodos , Estudos Prospectivos , Edema Pulmonar/epidemiologia
9.
Int J Mol Sci ; 19(2)2018 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-29462945

RESUMO

Estrogen receptor-α (ERα) is a ligand-inducible protein which mediates estrogenic hormones signaling and defines the luminal BC phenotype. Recently, we demonstrated that even in absence of ligands ERα (apoERα) binds chromatin sites where it regulates transcription of several protein-coding and lncRNA genes. Noteworthy, apoERα-regulated lncRNAs marginally overlap estrogen-induced transcripts, thus representing a new signature of luminal BC genes. By the analysis of H3K27ac enrichment in hormone-deprived MCF-7 cells, we defined a set of Super Enhancers (SEs) occupied by apoERα, including one mapped in proximity of the DSCAM-AS1 lncRNA gene. This represents a paradigm of apoERα activity since its expression is largely unaffected by estrogenic treatment, despite the fact that E2 increases ERα binding on DSCAM-AS1 promoter. We validated the enrichment of apoERα, p300, GATA3, FoxM1 and CTCF at both DSCAM-AS1 TSS and at its associated SE by ChIP-qPCR. Furthermore, by analyzing MCF-7 ChIA-PET data and by 3C assays, we confirmed long range chromatin interaction between the SE and the DSCAM-AS1 TSS. Interestingly, CTCF and p300 binding showed an enrichment in hormone-depleted medium and in the presence of ERα, elucidating the dynamics of the estrogen-independent regulation of DSCAM-AS1 expression. The analysis of this lncRNA provides a paradigm of transcriptional regulation of a luminal specific apoERα regulated lncRNA.


Assuntos
Neoplasias da Mama/metabolismo , Elementos Facilitadores Genéticos , Receptor alfa de Estrogênio/metabolismo , Regulação Neoplásica da Expressão Gênica , RNA Longo não Codificante/genética , Cromatina/genética , Cromatina/metabolismo , Receptor alfa de Estrogênio/genética , Estrogênios/metabolismo , Feminino , Humanos , Células MCF-7 , RNA Longo não Codificante/metabolismo
10.
Crit Care ; 14(6): R196, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21040580

RESUMO

INTRODUCTION: A lack of data exists in the literature evaluating acidemia on admission as a favorable or negative prognostic factor in patients with acute cardiogenic pulmonary edema (ACPE) treated with non-invasive continuous positive airway pressure (CPAP). The objective of the present study was to investigate the impact of acidemia on admission on outcomes of ACPE patients treated with CPAP. METHODS: This was a retrospective, observational study of consecutive patients admitted with a diagnosis of ACPE to the Emergency Department of IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Milan, Italy, between January 2003 and December 2006, treated with CPAP on admission. Two groups of patients were identified: subjects with acidemia (acidotic group), and those with a normal pH on admission (controls). The primary endpoint was clinical failure, defined as switch to bi-level ventilation, switch to endotracheal intubation or inhospital mortality. RESULTS: Among the 378 patients enrolled, 290 (77%) were acidotic on admission. A total of 28 patients (9.7%) in the acidotic group and eight patients (9.1%) among controls experienced a clinical failure (odds ratio = 1.069, 95% confidence interval = 0.469 to 2.438, P = 0.875). Survival analysis indicates that, among acidotic patients, the time at which 50% of patients reached the 7.35 threshold was 173 minutes (95% confidence interval = 153 to 193). Neither acidemia (P = 0.205) nor the type of acidosis on admission (respiratory acidosis, P = 0.126; metabolic acidosis, P = 0.292; mixed acidosis, P = 0.397) affected clinical failure after adjustment for clinical and laboratory factors in a multivariable logistic regression model. CONCLUSIONS: Neither acidemia nor the type of acidosis on admission should be considered risk factors for adverse outcomes in ACPE patients treated with CPAP.


Assuntos
Acidose/sangue , Pressão Positiva Contínua nas Vias Aéreas , Edema Pulmonar/sangue , Edema Pulmonar/terapia , Acidose/complicações , Acidose/terapia , Doença Aguda , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Concentração de Íons de Hidrogênio , Masculino , Edema Pulmonar/complicações , Estudos Retrospectivos , Fatores de Risco , Síncope/sangue , Síncope/complicações , Síncope/terapia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA