Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(26): 11802-11811, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38885118

RESUMO

Cyanobacterial blooms occur at increasing frequency and intensity, notably in freshwater. This leads to the introduction of complex mixtures of their products, i.e., cyano-metabolites, to drinking water treatment plants. To assess the fate of cyano-metabolite mixtures during ozonation, a novel multicompound ozone (O3) competition kinetics method was developed. Sixteen competitors with known second-order rate constants for their reaction with O3 ranging between 1 and 108 M-1 s-1 were applied to cover a wide range of the O3 reactivity. The apparent second-order rate constants (kapp,O3) at pH 7 were simultaneously determined for 31 cyano-metabolites. kapp,O3 for olefin- and phenol-containing cyano-metabolites were consistent with their expected reactivity (0.4-1.7 × 106 M-1 s-1) while kapp,O3 for tryptophan- and thioether-containing cyano-metabolites were significantly higher than expected (3.4-7.3 × 107 M-1 s-1). Cyano-metabolites containing these moieties are predicted to be well abated during ozonation. For cyano-metabolites containing heterocycles, kapp,O3 varied from <102 to 5.0 × 103 M-1 s-1, giving first insights into the O3 reactivity of this class of compounds. Due to lower O3 reactivities, heterocycle- and aliphatic amine-containing cyano-metabolites may be only partially degraded by a direct O3 reaction near circumneutral pH. Hydroxyl radicals, which are formed during ozonation, may be more important for their abatement. This novel multicompound kinetic method allows a high-throughput screening of ozonation kinetics.


Assuntos
Cianobactérias , Ozônio , Ozônio/química , Cinética , Cianobactérias/metabolismo , Purificação da Água
2.
Environ Sci Technol ; 57(47): 18509-18518, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36441566

RESUMO

Ferrate (Fe(VI)) is a novel oxidant that can be used to mitigate disinfection byproduct (DBP) precursors. However, the reaction of Fe(VI) with organic nitrogen, which is a potential precursor of potent nitrogenous DBPs, remains largely unexplored. The present work aimed to identify the kinetics and products for the reaction of Fe(VI) with primary amines, notably amino acids. A new kinetic model involving ionizable intermediates was proposed and can describe the unusual pH effect on the Fe(VI) reactivity toward primary amines and amino acids. The Fe(VI) oxidation of phenylalanine produced a mixture of nitrile, nitrite/nitrate, amide, and ammonia, while nitroalkane was an additional product in the case of glycine. The product distribution for amino acids significantly differed from that of uncarboxylated primary amines that mainly generate nitriles. A general reaction pathway for primary amines and amino acids was proposed and notably involved the formation of imines, the degradation of which was affected by the presence of a carboxylic group. In comparison, ozonation led to higher yields of nitroalkanes that could be readily converted to potent halonitroalkanes during chlor(am)ination. Based on this study, Fe(VI) can effectively mitigate primary amine-based, nitrogenous DBP precursors with little formation of toxic halonitroalkanes.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Aminas , Aminoácidos , Oxirredução , Oxidantes/química , Nitrogênio , Cinética , Poluentes Químicos da Água/análise
3.
Water Res ; 220: 118515, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35700645

RESUMO

Chlorine dioxide (ClO2) applications to drinking water are limited by the formation of chlorite (ClO2-) which is regulated in many countries. However, when ClO2 is used as a pre-oxidant, ClO2- can be oxidized by chlorine during subsequent disinfection. In this study, a kinetic model for the reaction of chlorine with ClO2- was developed to predict the fate of ClO2- during chlorine disinfection. The reaction of ClO2- with chlorine was found to be highly pH-dependent with formation of ClO3- and ClO2 in ultrapure water. In presence of dissolved organic matter (DOM), 60-70% of the ClO2- was transformed to ClO3- during chlorination, while the in situ regenerated ClO2 was quickly consumed by reaction with DOM. The remaining 30-40% of the ClO2- first reacted to ClO2 which then formed chlorine from the DOM-ClO2 reaction. Since only part of the ClO2- was transformed to ClO3-, the sum of the molar concentrations of oxychlorine species (ClO2- + ClO3-) decreased during chlorination. By kinetic modelling, the ClO2- concentration after 24 h of chlorination was accurately predicted in synthetic waters but was largely overestimated in natural waters, possibly due to a ClO2- decay enhanced by high concentrations of chloride and in situ formed bromine from bromide. Understanding the chlorine-ClO2- reaction mechanism and the corresponding kinetics allows to potentially apply higher ClO2 doses during the pre-oxidation step, thus improving disinfection byproduct mitigation while keeping ClO2-, and if required, ClO3- below the regulatory limits. In addition, ClO2 was demonstrated to efficiently degrade haloacetonitrile precursors, either when used as pre-oxidant or when regenerated in situ during chlorination.


Assuntos
Compostos Clorados , Desinfetantes , Água Potável , Purificação da Água , Cloretos , Cloro , Desinfecção , Halogenação , Cinética , Oxidantes , Óxidos
4.
Water Res ; 209: 117881, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34861435

RESUMO

Ferrate (Fe(VI)), a promising water treatment oxidant, can be used for micropollutant abatement or disinfection byproduct mitigation. However, knowledge gaps remain concerning the interaction between Fe(VI) and dissolved organic matter structures, notably primary amines. This study investigated degradation kinetics and products of several aliphatic primary amines by Fe(VI). Primary amines showed appreciable reactivity toward Fe(VI) (2.7-68 M-1s-1 at pH 7-9), ranking as follows: benzylamine > phenethylamine > phenylpropylamine > methylamine ≈ propylamine. Nitriles were the main oxidation products of the primary amines, with molar yields of 61-103%. Minor products included aldehydes, carboxylic acids, nitroalkanes, nitrite, nitrate, and ammonia. The buffering conditions were important. Compared to phosphate, borate enhanced the reactivity of the amines and shifted the products from nitriles to carbonyls. An evaluation of the effect potency of some cyano-compounds by an in vitro bioassay for oxidative stress response and cytotoxicity suggested that non-halogenated nitriles are unlikely to pose a significant threat because they were only toxic at high concentrations, acted as baseline toxicants and did not cause oxidative stress, unlike halonitroalkanes or halonitriles. The formation of non-halogenated nitriles is preferable to the formation of nitroalkanes arising from the ozonation of primary amines (other than amino acid N-terminals) because, during chlorination, nitriles remain unreactive while nitroalkanes lead to potent halonitroalkanes.

5.
Water Res ; 187: 116418, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33011567

RESUMO

Pre-oxidation is often used before disinfection with chlorine to decrease the reactivity of the water matrix and mitigate the formation of regulated disinfection byproducts (DBPs). This study provides insights on the impact of oxidative pre-treatment with chlorine dioxide (ClO2), ozone (O3), ferrate (Fe(VI)) and permanganate (Mn(VII)) on Suwannee River Natural Organic Matter (SRNOM) properties characterized by the UV absorbance at 254 nm (UV254) and the electron donating capacity (EDC). Changes in NOM reactivity and abatement of DBP precursors are also assessed. The impact of pre-oxidants (based on molar concentration) on UV254 abatement ranked in the order O3 > Mn(VII) > Fe(VI)/ClO2, while the efficiency of pre-oxidation on EDC abatement followed the order Mn(VII) > ClO2 > Fe(VI) > O3 and two phases were observed. At low specific ClO2, Fe(VI) and Mn(VII) doses corresponding to < 50% EDC abatement, a limited relative abatement of UV254 compared to the EDC was observed (~ 8% EDC abatement per 1% UV254 abatement). This suggests the oxidation of phenolic-type moieties to quinone-type moieties which absorb UV254 and don't contribute to EDC. At higher oxidant doses (> 50% EDC abatement), a similar abatement of EDC and UV254 (~ 0.9-1.2% EDC abatement per 1% UV254 abatement) suggested aromatic ring cleavage. In comparison to the other oxidants, O3 abated the relative UV254 more effectively, due to a more efficient cleavage of aromatic rings. For a pre-oxidation with Mn(VII), ClO2 and Fe(VI), similar correlations between the EDC abatement and the chlorine demand or the adsorbable organic halide (AOX) formation were obtained. In contrast, O3 pre-treatment led to a lower chlorine demand and AOX formation for equivalent EDC abatement. For all oxidants, trihalomethane formation was poorly correlated with both EDC and UV254. The EDC abatement was found to be a pre-oxidant-independent surrogate for haloacetonitrile formation. These results emphasize the benefits of combining EDC and UV254 measurement to understand and monitor oxidant-induced changes of NOM and assessing DBP formation.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Cloro , Desinfecção , Elétrons , Halogenação , Oxirredução , Poluentes Químicos da Água/análise
6.
Water Res ; 163: 114846, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31306939

RESUMO

Sulfate radical (SO4•-) has been extensively studied as a promising alternative in advanced oxidation processes (AOPs) for water treatment. However, little is known about its reactivity to the ubiquitous dissolved organic matter (DOM) in water bodies. SO4•- would selectively react with electron rich moieties in DOM, known as chromophoric DOM (CDOM), due to its light absorbing property. In this study, the reactivity and typical structural transformation of CDOM with SO4•- was investigated. Four well characterized hydrophobic DOM fractions extracted from different surface water sources were selected as model CDOM. SO4•- was produced through the activation of peroxymonosulfate (PMS) by Co(II) ions at pH 8 in borate buffer. The reactivity of CDOM was studied based on the decrease in its ultraviolet absorbance at 254 nm (UVA254) as a function of time. The reactivity of CDOM changed with time where fast and slow reacting CDOMs (i.e., CDOMfast and CDOMslow) were clearly distinguished. A second-order rate constant of CDOMfast with SO4•- was calculated by plotting UVA254 decrease versus PMS exposure; where a Rct value (i.e., ratio of sulfate radical exposure to PMS exposure) was calculated using pCBA as a probe compound. The transformation of CDOM was studied through the analysis of the changes in UVA254, electron donating capacity, fluorescence intensity, and total organic carbon. A transformation pathway leading to a significant carbon removal was proposed. This new knowledge on the kinetics and transformation of CDOM would ultimately assist in the development and operation of SO4•--based water treatment processes.


Assuntos
Sulfatos , Purificação da Água , Água Doce , Cinética
7.
Environ Sci Technol ; 52(22): 13421-13429, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30372050

RESUMO

Chlorine dioxide (ClO2) is commonly used as an alternative disinfectant to chlorine in drinking water treatment because it produces limited concentrations of halogenated organic disinfection byproducts. During drinking water treatment, the primary ClO2 byproducts are the chlorite (50-70%) and the chlorate ions (0-30%). However, a significant portion of the ClO2 remains unaccounted for. This study demonstrates that when ClO2 was reacting with phenol, one mole of free available chlorine (FAC) was produced per two moles of consumed ClO2. The in situ formed FAC completed the mass balance on Cl for inorganic ClO2 byproducts (FAC + ClO2- + ClO3-). When reacting with organic matter extracts at near neutral conditions (pH 6.5-8.1), ClO2 also yielded a significant amount of FAC (up to 25%). Up to 27% of this in situ formed FAC was incorporated in organic matter forming adsorbable organic chlorine, which accounted for up to 7% of the initial ClO2 dose. Only low concentrations of regulated trihalomethanes were produced because of an efficient mitigation of their precursors by ClO2 oxidation. Conversely, dichloroacetonitrile formation from ClO2-induced generation of FAC was higher than from addition of FAC in absence of ClO2. Overall, these findings provide important information on the formation of FAC and disinfection byproducts during drinking water treatment with ClO2.


Assuntos
Compostos Clorados , Desinfetantes , Purificação da Água , Cloro , Desinfecção , Óxidos , Trialometanos
8.
Environ Sci Technol ; 49(17): 10431-9, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26258946

RESUMO

Soil-air partition coefficient (Ksoil-air) values are often employed to investigate the fate of organic contaminants in soils; however, these values have not been measured for many compounds of interest, including semivolatile current-use pesticides. Moreover, predictive equations for estimating Ksoil-air values for pesticides (other than the organochlorine pesticides) have not been robustly developed, due to a lack of measured data. In this work, a solid-phase fugacity meter was used to measure the Ksoil-air values of 22 semivolatile current- and historic-use pesticides and their degradation products. Ksoil-air values were determined for two soils (semiarid and volcanic) under a range of environmentally relevant temperature (10-30 °C) and relative humidity (30-100%) conditions, such that 943 Ksoil-air measurements were made. Measured values were used to derive a predictive equation for pesticide Ksoil-air values based on temperature, relative humidity, soil organic carbon content, and pesticide-specific octanol-air partition coefficients. Pesticide volatilization losses from soil, calculated with the newly derived Ksoil-air predictive equation and a previously described pesticide volatilization model, were compared to previous results and showed that the choice of Ksoil-air predictive equation mainly affected the more-volatile pesticides and that the way in which relative humidity was accounted for was the most critical difference.


Assuntos
Ar , Umidade , Laboratórios , Modelos Teóricos , Praguicidas/análise , Solo/química , Temperatura , Modelos Lineares , Poluentes do Solo/análise , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA