Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(23)2023 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-38069100

RESUMO

The castration of stallions is traditionally performed after puberty, at around the age of 2 years old. No studies have focused on the effects of early castration on osteoarticular metabolism. Thus, we aimed to compare early castration (3 days after birth) with traditional castration (18 months of age) in horses. Testosterone and estradiol levels were monitored from birth to 33 months in both groups. We quantified the levels of biomarkers of cartilage and bone anabolism (CPII and N-MID) and catabolism (CTX-I and CTX-II), as well as of osteoarthritis (HA and COMP) and inflammation (IL-6 and PGE2). We observed a lack of parallelism between testosterone and estradiol synthesis after birth and during puberty in both groups. The extra-gonadal synthesis of steroids was observed around the 28-month mark, regardless of the castration age. We found the expression of estrogen receptor (ESR1) in cartilage and bone, whereas androgen receptor (AR) expression appeared to be restricted to bone. Nevertheless, with respect to osteoarticular metabolism, steroid hormone deprivation resulting from early castration had no discernable impact on the levels of biomarkers related to bone and cartilage metabolism, nor on those associated with OA and inflammation. Consequently, our research demonstrated that early castration does not disrupt bone and cartilage homeostasis.


Assuntos
Osteoartrite , Maturidade Sexual , Animais , Masculino , Cavalos , Orquiectomia , Castração , Testosterona/farmacologia , Estradiol/farmacologia , Inflamação , Biomarcadores
2.
Reprod Toxicol ; 118: 108363, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36931579

RESUMO

Although it is well established that testis produces estrogens, their precise effect is not fully documented, particularly during the prepubertal period. In a previous in vivo study, we demonstrated that an exposure of prepubertal rats (15-30 days post-partum (dpp)) to 17ß-estradiol (E2) delays the establishment of spermatogenesis. In order to characterize the mechanisms of action and the direct targets of E2 on the immature testis, we developed an organotypic culture model of testicular explants obtained from prepubertal rats (15, 20 and 25 dpp). To determine the involvement of nuclear estrogen receptors (ERs) in the effect of E2, particularly that of ESR1 which is the major ER expressed in the prepubertal testis, a pre-treatment with the full antagonist of this type of ERs (ICI 182.780) was performed. Histological analyses, gene expression studies and hormonal assays were conducted to investigate the effects of E2 on steroidogenesis- and spermatogenesis-related endpoints. Testicular explants from 15 dpp rats were unresponsive to E2 exposure while E2 effects were observed in those obtained from 20 and 25 dpp rats. An E2 exposure of testicular explants obtained from 20 dpp rats seemed to accelerate the establishment of spermatogenesis, whereas an E2 exposure of 25 dpp testicular explants induced a delay of this process. These effects could be related to the E2-induced modulation of steroidogenesis, and involved both ESR1-dependent and -independent mechanisms of action. Overall, this ex vivo study demonstrated differential age- and concentration-related effects of E2 on the testis during the prepubertal period.


Assuntos
Estradiol , Testículo , Masculino , Ratos , Animais , Estradiol/metabolismo , Estrogênios/farmacologia , Espermatogênese , Receptores de Estrogênio/metabolismo
3.
Domest Anim Endocrinol ; 79: 106691, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34844012

RESUMO

Although vitamin D acts in various biological processes, it plays a critical role in the maintenance of bone health, and regulates calcium homeostasis. In humans and rodents, the main tissues involved in vitamin D metabolism are the liver and the kidneys, however it has been shown that the testis has strongly participated in its bioactivation. Indeed, in these different species, enzymes metabolizing vitamin D (CYP27A1, CYP27B1 and CYP2R1) have been demonstrated in this tissue. Moreover, men with hypogonadism have shown a decrease in circulating levels of vitamin D. In equine species, the castration of males is a regular practice to reduce the behavior of stallions deemed too aggressive. Castration is carried out at various ages: in foals during their growth or in adulthood once they have reached their optimum size. Although horses exhibit atypical vitamin D metabolism with low circulating levels of vitamin D, it was suggested that testis may contribute to its activation as has been described in rodents and humans; castration could therefore be likely to affect its metabolism. In this study, blood levels of bioactive form of vitamin D (1 α,25[OH] 2 vitamin D 3 ) were measured before and after castration at different ages: 1 wk, after puberty (2 yr) and at adulthood (6 yr). The gene expression of enzymes involved in vitamin D metabolism has been sought in the testis of different experimental groups. No change in bioactive vitamin D3 levels was observed after castration regardless of the age at the time of surgery. The exceptional status of equine species is confirmed with a low or a lack of testis contribution to vitamin D metabolism, regardless of testicular development. This is demonstrated by a low or a lack of signal from enzymes involved in vitamin D bioactivation. Therefore, horses constitute a unique model in comparative endocrinology.


Assuntos
Testículo , Vitamina D , Animais , Colecalciferol/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Cavalos/genética , Humanos , Masculino , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA