Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38591409

RESUMO

Since 2010, huge quantities of Sargassum spp. algae have been proliferating in the Atlantic Ocean and stranding on Caribbean beaches, causing major economic, environmental, and health problems. In this study, an innovative high-density binderless particleboard was developed using uniaxial thermo-compression coupled with a cooling system. The raw material consisted of ground Sargassum seaweeds pre-treated by twin-screw extrusion with water to remove sea salt. The raw material and the particleboards were produced by using various analytical techniques such as Dynamic Vapor Sorption (DVS), Differential Scanning Calorimetry (DSC), Dynamic Mechanical Analysis (DMA), or Thermogravimetric Analysis (TGA). The experimental conditions for thermo-compression (temperature, pressure, time) were evaluated. The best thermo-compression conditions tested were 200 °C, 40 MPa pressure for 7.5 min. This resulted in a particleboard with high density (up to 1.63 ± 0.02 g/cm3) and high flexural strength/modulus (up to 32.3 ± 1.8 MPa/6.8 ± 0.2 GPa, respectively), but a low water contact angle of 38.9° ± 3.5°. Thermal analyses revealed the effect of alginates on the mechanical properties of particleboards. This work opens the door to a new way of adding value to Sargassum seaweed, using the whole algae with minimal pre-treatment.

2.
J Vis Exp ; (167)2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33586706

RESUMO

A versatile twin-screw extrusion process to provide an efficient thermo-mechano-chemical pre-treatment on lignocellulosic biomass before using it as source of mechanical reinforcement in fully bio-based fiberboards was developed. Various lignocellulosic crop by-products have already been successfully pre-treated through this process, e.g., cereal straws (especially rice), coriander straw, shives from oleaginous flax straw, and bark of both amaranth and sunflower stems. The extrusion process results in a marked increase in the average fiber aspect ratio, leading to improved mechanical properties of fiberboards. The twin-screw extruder can also be fitted with a filtration module at the end of the barrel. The continuous extraction of various chemicals (e.g., free sugars, hemicelluloses, volatiles from essential oil fractions, etc.) from the lignocellulosic substrate, and the fiber refining can, therefore, be performed simultaneously. The extruder can also be used for its mixing ability: a natural binder (e.g., Organosolv lignins, protein-based oilcakes, starch, etc.) can be added to the refined fibers at the end of the screw profile. The obtained premix is ready to be molded through hot pressing, with the natural binder contributing to fiberboard cohesion. Such a combined process in a single extruder pass improves the production time, production cost, and may lead to reduction in plant production size. Because all the operations are performed in a single step, fiber morphology is better preserved, thanks to a reduced residence time of the material inside the extruder, resulting in enhanced material performances. Such one-step extrusion operation may be at the origin of a valuable industrial process intensification. Compared to commercial wood-based materials, these fully bio-based fiberboards do not emit any formaldehyde, and they could find various applications, e.g., intermediate containers, furniture, domestic flooring, shelving, general construction, etc.


Assuntos
Biotecnologia/instrumentação , Biotecnologia/métodos , Lignina/química , Absorção Fisico-Química , Biomassa , Dessecação , Temperatura Alta , Água/química , Madeira/química
3.
Colloids Surf B Biointerfaces ; 195: 111267, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32731092

RESUMO

Carbohydrates are the most recurrent materials employed for active components encapsulation using twin-screw extrusion. However, the influence of process parameters on the properties of the final product remains a challenge. In this paper, special attention was given to the incorporation of a hydrophobic model compound (MCT-oil), in a maltodextrin matrix with a compatibilizing biopolymer. The effects of the extrusion parameters, as well as the influence of different formulations were analyzed. The mild extrusion conditions allowed obtaining blends with acceptable texture and viscosity to enhance the dispersion of the active compound. The encapsulation systems obtained were in a glassy state at room temperature and they remained stable at 60 % RH for a long time. Satisfactory incorporation rates of MCT-oil were found reaching encapsulation efficiencies up to 90 %. These results showed that the chosen compatibilizing agent enhanced the dispersion and stabilization of the MCT-oil within the matrix and significantly improved encapsulation.


Assuntos
Suplementos Nutricionais , Polissacarídeos , Biopolímeros , Composição de Medicamentos
4.
Molecules ; 22(11)2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29144402

RESUMO

This paper deals with the use of tetrabutylammonium fluoride/dimethylsulfoxide (TBAF/DMSO) to characterize the molar mass distribution of non-derivatized cellulosic samples by size exclusion chromatography (SEC). Different cellulose samples with various average degree of polymerization (DP) were first solubilized in this solvent system, with increasing TBAF rates, and then analyzed by SEC coupled to a refractive index detector (RID), using DMSO as mobile phase. The Molar Masses (MM) obtained by conventional calibration were then discussed and compared with suppliers' data and MM determined by viscosimetry measurements. By this non-classic method, molar mass of low DP samples (Avicel® and cotton fibers) have been determined. For high DP samples (α-cellulose and Vitacel®), dissolution with TBAF concentration of 10 mg/mL involved elution of cellulose aggregates in the exclusion volume, related to an incomplete dissolution or the dilution of TBAF molecules in elution solvent, preventing the correct evaluation of their molar mass.


Assuntos
Celulose/análise , Cromatografia em Gel/métodos , Cromatografia Líquida de Alta Pressão/métodos , Dimetil Sulfóxido/química , Compostos de Amônio Quaternário/química , Peso Molecular , Solventes , Água
5.
Anal Bioanal Chem ; 408(29): 8403-8414, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27695986

RESUMO

This work deals with the modifications resulting from the dissolution of four commercial cellulosic samples, with different crystallinity rates and degrees of polymerization (DPs), in four solvent systems, known and used to dissolve cellulose. The dissolution conditions were optimized for the 16 various systems and followed by turbidity measurements. After regeneration, the samples were analyzed by thermal gravimetric analysis (TGA), scanning electron microscopy (SEM), and X-ray diffractometry (XRD) to study their modification. Viscosimetry measurements were used to evaluate the potential decrease of the DP after dissolution. The observed structural modifications established that, for low DP, all the solvent systems were efficient in dissolving the cellulose without altering the DP, except BMIM [Cl], which provoked a decrease of up to 40 % and a decrease of around 20 % of the degradation temperature (onset temperature, T o). For high molecular weight (MW) celluloses, DMSO/TBAF was the only system to allow a complete dissolution without any molar mass loss and degradation temperature modification.

6.
Carbohydr Polym ; 144: 464-73, 2016 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-27083839

RESUMO

In this study, five different types of maltodextrins (DE-2, DE-6, DE-12, DE-17 and DE-19) were characterized for the physico-chemical properties. TGA, DVS and SEC analyses were carried out and additionally apparent melt-viscosity (in a micro-extruder) and the glass transition temperature (analyzed by DMA) of maltodextrin/plasticizer mixtures were also measured in order to evaluate both the effect of plasticizer nature and content and the effect of the DE-value. For this, three plasticizing agents were compared: water, d-sorbitol and glycerin. The adsorption isotherms showed that depending on the DE-value and the relative humidity they were exposed to, different behavior could be obtained. For example, for relative humidities below 60% RH maltodextrin DE-2 was the least hygroscopic. And on the contrary for relative humidities above 75% RH maltodextrin DE-2 was the most hygroscopic. The rheology measurements showed that the viscosity decreased with the increase of the DE-value and with the plasticizer content, as expected. On the contrary, no direct correlation could be established between the DE-value and the glass transition temperature. These results demonstrated that to predict maltodextrins behavior and to better adapt the process conditions, combined analyses are mandatory as the DE-value alone is not sufficient. The most compelling evidence was obtained by size exclusion chromatography, which pointed out that maltodextrins had a bimodal molecular weight distribution composed of high and low molecular weight oligo-saccharides. Indeed, maltodextrins are highly polydisperse materials (i.e. polydispersity index ranging from 5 to 12) and that should be the reason why such distinct behaviors were observed in some of the physico-chemical analyses that were preformed.


Assuntos
Fenômenos Químicos , Polissacarídeos/química , Peso Molecular , Reologia , Temperatura de Transição , Viscosidade
7.
Materials (Basel) ; 6(6): 2240-2261, 2013 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-28809271

RESUMO

Commercial α-cellulose was compression-molded to produce 1A dog-bone specimens under various operating conditions without any additive. The resulting agromaterials exhibited a smooth, plastic-like surface, and constituted a suitable target as replacement for plastic materials. Tensile and three-points bending tests were conducted according to ISO standards related to the evaluation of plastic materials. The specimens had strengths comparable to classical petroleum-based thermoplastics. They also exhibited high moduli, which is characteristic of brittle materials. A higher temperature and higher pressure rate produced specimens with higher mechanical properties while low moisture content produced weaker specimens. Generally, the strong specimen had higher specific gravity and lower moisture content. However, some parameters did not follow the general trend e.g., thinner specimen showed much higher Young's Modulus, although their specific gravity and moisture content remained similar to control, revealing a marked skin-effect which was confirmed by SEM observations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA