Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Theranostics ; 11(20): 10047-10063, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34815803

RESUMO

Parkin (PK) is an E3-ligase harboring tumor suppressor properties that has been associated to various cancer types including glioblastoma (GBM). However, PK is also a transcription factor (TF), the contribution of which to GBM etiology remains to be established. Methods: The impact of PK on GBM cells proliferation was analyzed by real-time impedance measurement and flow cytometry. Cyclins A and B proteins, promoter activities and mRNA levels were measured by western blot, luciferase assay and quantitative real-time PCR. Protein-protein and protein-promoter interactions were performed by co-immunoprecipitation and by ChIP approaches. The contribution of endogenous PK to tumor progression in vivo was performed by allografts of GL261 GBM cells in wild-type and PK knockout mice. Results: We show that overexpressed and endogenous PK control GBM cells proliferation by modulating the S and G2/M phases of the cell cycle via the trans-repression of cyclin A and cyclin B genes. We establish that cyclin B is regulated by both E3-ligase and TF PK functions while cyclin A is exclusively regulated by PK TF function. PK invalidation leads to enhanced tumor progression in immunocompetent mice suggesting an impact of PK-dependent tumor environment to tumor development. We show that PK is secreted by neuronal cells and recaptured by tumor cells. Recaptured PK lowered cyclins levels and decreased GBM cells proliferation. Further, PK expression is decreased in human GBM biopsies and its expression is inversely correlated to both cyclins A and B expressions. Conclusion: Our work demonstrates that PK tumor suppressor function contributes to the control of tumor by its cellular environment. It also shows a key role of PK TF function in GBM development via the control of cyclins in vitro and in vivo. It suggests that therapeutic strategies aimed at controlling PK shuttling to the nucleus may prove useful to treat GBM.


Assuntos
Glioblastoma/terapia , Ubiquitina-Proteína Ligases/uso terapêutico , Animais , Neoplasias Encefálicas/patologia , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células/genética , Ciclina A/efeitos dos fármacos , Ciclina A/metabolismo , Ciclina B/efeitos dos fármacos , Ciclina B/metabolismo , Ciclinas/genética , Feminino , Citometria de Fluxo/métodos , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Genes Supressores de Tumor/fisiologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Masculino , Camundongos , Camundongos Knockout , MicroRNAs/metabolismo , Modelos Animais , RNA Mensageiro
2.
Cell Death Differ ; 25(5): 873-884, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29352272

RESUMO

p53 is a transcription factor that is implicated in the control of both apoptotic and autophagic cell death. This tumor suppressor elicits both pro-autophagic and anti-autophagic phenotypes depending of its intracellular localization. The ability of p53 to repress autophagy has been exclusively associated to its cytoplasmic localization. Here, we show that transcriptional activity of p53 also contributes to autophagy down-regulation. Thus, nuclear p53 controls PINK1, a key protein involved in the control of mitophagy, by repressing its promoter activity, protein and mRNA levels, ex-vivo and in vivo. We establish that deletion of an identified p53 responsive element on PINK1 promoter impacts p53-mediated PINK1 transcriptional repression and we demonstrate a p53-PINK1 physical interaction by chromatin immunoprecipitation. Accordingly, we show that only nuclear p53 accounts for its ability to repress PINK1 gene transcription. Further, we demonstrate ex-vivo and in vivo that p53 invalidation in human cells increases LC3 maturation as well as optineurin and NDP52 autophagy receptors expression and down-regulates TIM23, TOM20 and HSP60 mitophagy markers. Importantly, this phenotype is mimicked by TP53 invalidation in mice brain. Finally, by combining pharmacological and genetic approaches, we show that the p53-mediated negative regulation of autophagy is PINK1-dependent. Thus pifithrin-α-mediated blockade of p53 transcriptional activity enhances LC3 maturation and reduces p62, TIM23, TOM20 and HSP60 protein levels. This pifithrin-α-associated pro-mitophagy phenotype is fully abolished by PINK1 depletion. This data unravels a novel pathway by which nuclear p53 can repress autophagy/mitophagy that could underlie important dysfunctions in both neurodegenerative and cancer diseases.


Assuntos
Autofagia , Regulação para Baixo , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Neoplasias/metabolismo , Proteínas Quinases/biossíntese , Transcrição Gênica , Proteína Supressora de Tumor p53/metabolismo , Animais , Núcleo Celular/genética , Núcleo Celular/metabolismo , Citosol/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Mitofagia , Neoplasias/genética , Neoplasias/patologia , Proteínas Quinases/genética , Proteína Supressora de Tumor p53/genética
3.
Biol Psychiatry ; 83(5): 416-427, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28587718

RESUMO

BACKGROUND: Mitophagy and mitochondrial dynamics alterations are two major hallmarks of neurodegenerative diseases. Dysfunctional mitochondria accumulate in Alzheimer's disease-affected brains by yet unexplained mechanisms. METHODS: We combined cell biology, molecular biology, and pharmacological approaches to unravel a novel molecular pathway by which presenilins control phosphatase and tensin homolog-induced kinase 1 (Pink-1) expression and transcription. In vivo approaches were carried out on various transgenic and knockout animals as well as in adeno-associated virus-infected mice. Functional readout and mitochondrial physiology (mitochondrial potential) were assessed by combined procedures including flow cytometry, live imaging analysis, and immunohistochemistry. RESULTS: We show that presenilins 1 and 2 trigger opposite effects on promoter transactivation, messenger RNA, and protein expression of Pink-1. This control is linked to γ-secretase activity and ß-amyloid precursor protein but is independent of phosphatase and tensin homolog. We show that amyloid precursor protein intracellular domain (AICD) accounts for presenilin-dependent phenotype and upregulates Pink-1 transactivation in cells as well as in vivo in a Forkhead box O3a-dependent manner. Interestingly, the modulation of γ-secretase activity or AICD expression affects Pink-1-related control of mitophagy and mitochondrial dynamics. Finally, we show that parkin acts upstream of presenilins to control Pink-1 promoter transactivation and protein expression. CONCLUSIONS: Overall, we delineate a molecular cascade presenilins-AICD-Forkhead box O3a linking parkin to Pink-1. Our study demonstrates AICD-mediated Pink-1-dependent control of mitochondrial physiology by presenilins. Furthermore, it unravels a parkin-Pink-1 feedback loop controlling mitochondrial physiology that could be disrupted in neurodegenerative conditions.


Assuntos
Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Proteína Forkhead Box O3/metabolismo , Hipocampo/metabolismo , Mitocôndrias/metabolismo , Presenilinas/metabolismo , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Linhagem Celular , Modelos Animais de Doenças , Embrião de Mamíferos , Fibroblastos , Células HEK293 , Humanos , Espaço Intracelular/metabolismo , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
4.
Front Neurosci ; 12: 965, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30697141

RESUMO

PRKN (PARK2) is a key gene involved in both familial and sporadic Parkinson's disease that encodes parkin (PK). Since its discovery by the end of the 90s, both functional and more recently, structural studies led to a consensual view of PK as an E3 ligase only. It is generally considered that this function conditions the cellular load of a subset of cytosolic proteins prone to proteasomal degradation and that a loss of E3 ligase function triggers an accumulation of potentially toxic substrates and, consequently, a neuronal loss. Furthermore, PK molecular interplay with PTEN-induced kinase 1 (PINK1), a serine threonine kinase also involved in recessive cases of Parkinson's disease, is considered to underlie the mitophagy process. Thus, since mitochondrial homeostasis significantly governs cell health, there is a huge interest of the scientific community centered on PK function. In 2009, we have demonstrated that PK could also act as a transcription factor (TF) and induces neuroprotection via the downregulation of the pro-apoptotic and tumor suppressor factor, p53. Importantly, the DNA-binding properties of PK and its nuclear localization suggested an important role in the control of several genes. The duality of PK subcellular localization and of its associated ubiquitin ligase and TF functions suggests that PK could behave as a key molecular modulator of various physiological cellular signaling pathways that could be disrupted in pathological contexts. Here, we update the current knowledge on PK direct and indirect TF-mediated control of gene expression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA