Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38338988

RESUMO

Osteoarthritis (OA) is a degenerative condition of the articular cartilage with chronic low-grade inflammation. Monocytes have a fundamental role in the progression of OA, given their implication in inflammatory responses and their capacity to differentiate into bone-resorbing osteoclasts (OCLs). This observational-experimental study attempted to better understand the molecular pathogenesis of OA through the examination of osteoclast progenitor (OCP) cells from both OA patients and healthy individuals (25 OA patients and healthy samples). The expression of osteoclastogenic and inflammatory genes was analyzed using RT-PCR. The OA monocytes expressed significantly higher levels of CD16, CD115, TLR2, Mincle, Dentin-1, and CCR2 mRNAs. Moreover, a flow cytometry analysis showed a significantly higher surface expression of the CD16 and CD115 receptors in OA vs. healthy monocytes, as well as a difference in the distribution of monocyte subsets. Additionally, the OA monocytes showed a greater osteoclast differentiation capacity and an enhanced response to an inflammatory stimulus. The results of this study demonstrate the existence of significant differences between the OCPs of OA patients and those of healthy subjects. These differences could contribute to a greater understanding of the molecular pathogenesis of OA and to the identification of new biomarkers and potential drug targets for OA.


Assuntos
Monócitos , Osteoartrite , Humanos , Monócitos/metabolismo , Osteoartrite/metabolismo , Osteoclastos/metabolismo , Inflamação/metabolismo , Osso e Ossos/metabolismo
2.
Mol Oncol ; 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38214418

RESUMO

Metformin and IACS-010759 are two distinct antimetabolic agents. Metformin, an established antidiabetic drug, mildly inhibits mitochondrial complex I, while IACS-010759 is a new potent mitochondrial complex I inhibitor. Mitochondria is pivotal in the energy metabolism of cells by providing adenosine triphosphate through oxidative phosphorylation (OXPHOS). Hence, mitochondrial metabolism and OXPHOS become a vulnerability when targeted in cancer cells. Both drugs have promising antitumoral effects in diverse cancers, supported by preclinical in vitro and in vivo studies. We present evidence of their direct impact on cancer cells and their immunomodulatory effects. In clinical studies, while observational epidemiologic studies on metformin were encouraging, actual trial results were not as expected. However, IACS-01075 exhibited major adverse effects, thereby causing a metabolic shift to glycolysis and elevated lactic acid concentrations. Therefore, the future outlook for these two drugs depends on preventive clinical trials for metformin and investigations into the plausible toxic effects on normal cells for IACS-01075.

3.
Nat Commun ; 14(1): 2058, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37045841

RESUMO

WHIM Syndrome is a rare immunodeficiency caused by gain-of-function CXCR4 mutations. Here we report a decrease in bone mineral density in 25% of WHIM patients and bone defects leading to osteoporosis in a WHIM mouse model. Imbalanced bone tissue is observed in mutant mice combining reduced osteoprogenitor cells and increased osteoclast numbers. Mechanistically, impaired CXCR4 desensitization disrupts cell cycle progression and osteogenic commitment of skeletal stromal/stem cells, while increasing their pro-osteoclastogenic capacities. Impaired osteogenic differentiation is evidenced in primary bone marrow stromal cells from WHIM patients. In mice, chronic treatment with the CXCR4 antagonist AMD3100 normalizes in vitro osteogenic fate of mutant skeletal stromal/stem cells and reverses in vivo the loss of skeletal cells, demonstrating that proper CXCR4 desensitization is required for the osteogenic specification of skeletal stromal/stem cells. Our study provides mechanistic insights into how CXCR4 signaling regulates the osteogenic fate of skeletal cells and the balance between bone formation and resorption.


Assuntos
Síndromes de Imunodeficiência , Osteoporose , Doenças da Imunodeficiência Primária , Receptores CXCR4 , Animais , Camundongos , Síndromes de Imunodeficiência/genética , Mutação , Osteogênese/genética , Osteoporose/genética , Doenças da Imunodeficiência Primária/genética , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Humanos
4.
Elife ; 122023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36848406

RESUMO

Bone destruction is a hallmark of chronic inflammation, and bone-resorbing osteoclasts arising under such a condition differ from steady-state ones. However, osteoclast diversity remains poorly explored. Here, we combined transcriptomic profiling, differentiation assays and in vivo analysis in mouse to decipher specific traits for inflammatory and steady-state osteoclasts. We identified and validated the pattern-recognition receptors (PRR) Tlr2, Dectin-1, and Mincle, all involved in yeast recognition as major regulators of inflammatory osteoclasts. We showed that administration of the yeast probiotic Saccharomyces boulardii CNCM I-745 (Sb) in vivo reduced bone loss in ovariectomized but not sham mice by reducing inflammatory osteoclastogenesis. This beneficial impact of Sb is mediated by the regulation of the inflammatory environment required for the generation of inflammatory osteoclasts. We also showed that Sb derivatives as well as agonists of Tlr2, Dectin-1, and Mincle specifically inhibited directly the differentiation of inflammatory but not steady-state osteoclasts in vitro. These findings demonstrate a preferential use of the PRR-associated costimulatory differentiation pathway by inflammatory osteoclasts, thus enabling their specific inhibition, which opens new therapeutic perspectives for inflammatory bone loss.


Assuntos
Osteoporose , Probióticos , Animais , Camundongos , Osteogênese , Osteoporose/terapia , Receptor 2 Toll-Like , Saccharomyces/genética , Saccharomyces/metabolismo
6.
EBioMedicine ; 73: 103679, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34763205

RESUMO

BACKGROUND: The immunogenicity of a two-dose mRNA COVID-19 vaccine regimen is low in kidney transplant (KT) recipients. Here, we provide a thorough assessment of the immunogenicity of a three-dose COVID-19 vaccine regimen in this population. METHODS: We performed a prospective longitudinal study in sixty-one KT recipients given three doses of the BNT162b2 COVID-19 vaccine. We performed semi-structured pharmacovigilance interviews and monitored donor-specific antibodies and kidney function. We compared levels of anti-spike IgG, pseudo-neutralization activity against vaccine homologous and heterologous variants, frequency of spike-specific interferon (IFN)-γ-secreting cells, and antigen-induced cytokine production 28 days after the second and third doses. FINDINGS: Reactions to vaccine were mild. One patient developed donor-specific anti-HLA antibodies after the second dose which could be explained by non-adherence to immunosuppressive therapy. Spike-specific IgG seroconversion raised from 44·3% (n=27) after the second dose to 62·3% (n=38) after the third dose (p<0·05). The mean level of spike-specific IgG increased from 1620 (SD, 3460) to 8772 (SD, 16733) AU/ml (p<0·0001). Serum neutralizing activity increased after the third dose for all variants of concern tested including the Delta variant (p<0·0001). The frequency of spike-specific IFN-γ-secreting cells increased from 19·9 (SD, 56·0) to 64·0 (SD, 76·8) cells/million PBMCs after the third dose (p<0·0001). A significant increase in IFN-γ responses was also observed in patients who remained seronegative after three doses (p<0·0001). INTERPRETATION: A third dose of the BNT162b2 vaccine increases both cross-variant neutralizing antibody and cellular responses in KT recipients with an acceptable tolerability profile. FUNDING: Nice University Hospital, University Cote d'Azur.


Assuntos
Anticorpos Neutralizantes/imunologia , Vacina BNT162/imunologia , COVID-19/imunologia , Transplante de Rim , Idoso , Anticorpos Neutralizantes/sangue , Autoanticorpos/sangue , Vacina BNT162/administração & dosagem , Vacina BNT162/efeitos adversos , COVID-19/prevenção & controle , COVID-19/virologia , Feminino , Rejeição de Enxerto/prevenção & controle , Antígenos HLA/imunologia , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Imunossupressores/uso terapêutico , Interferon gama/metabolismo , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/metabolismo , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Fatores de Risco , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/imunologia
7.
Cancers (Basel) ; 12(11)2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33238609

RESUMO

Metabolic flexibility is the ability of a cell to adapt its metabolism to changes in its surrounding environment. Such adaptability, combined with apoptosis resistance provides cancer cells with a survival advantage. Mitochondrial voltage-dependent anion channel 1 (VDAC1) has been defined as a metabolic checkpoint at the crossroad of these two processes. Here, we show that the hypoxia-induced cleaved form of VDAC1 (VDAC1-ΔC) is implicated in both the up-regulation of glycolysis and the mitochondrial respiration. We demonstrate that VDAC1-ΔC, due to the loss of the putative phosphorylation site at serine 215, concomitantly with the loss of interaction with tubulin and microtubules, reprograms the cell to utilize more metabolites, favoring cell growth in hypoxic microenvironment. We further found that VDAC1-ΔC represses ciliogenesis and thus participates in ciliopathy, a group of genetic disorders involving dysfunctional primary cilium. Cancer, although not representing a ciliopathy, is tightly linked to cilia. Moreover, we highlight, for the first time, a direct relationship between the cilium and cancer cell metabolism. Our study provides the first new comprehensive molecular-level model centered on VDAC1-ΔC integrating metabolic flexibility, ciliogenesis, and enhanced survival in a hypoxic microenvironment.

8.
Elife ; 92020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32400390

RESUMO

Bone destruction relies on interactions between bone and immune cells. Bone-resorbing osteoclasts (OCLs) were recently identified as innate immune cells activating T cells toward tolerance or inflammation. Thus, pathological bone destruction not only relies on increased osteoclast differentiation, but also on the presence of inflammatory OCLs (i-OCLs), part of which express Cx3cr1. Here, we investigated the contribution of mouse Cx3cr1+ and Cx3cr1neg i-OCLs to bone loss. We showed that Cx3cr1+ and Cx3cr1neg i-OCLs differ considerably in transcriptional and functional aspects. Cx3cr1neg i-OCLs have a high ability to resorb bone and activate inflammatory CD4+ T cells. Although Cx3cr1+ i-OCLs are associated with inflammation, they resorb less and have in vitro an immune-suppressive effect on Cx3cr1neg i-OCLs, mediated by PD-L1. Our results provide new insights into i-OCL heterogeneity. They also reveal that different i-OCL subsets may interact to regulate inflammation. This contributes to a better understanding and prevention of inflammatory bone destruction.


Assuntos
Reabsorção Óssea/metabolismo , Receptor 1 de Quimiocina CX3C/metabolismo , Inflamação/metabolismo , Osteoclastos/metabolismo , Osteogênese , Osteoporose/metabolismo , Animais , Reabsorção Óssea/imunologia , Reabsorção Óssea/patologia , Reabsorção Óssea/prevenção & controle , Receptor 1 de Quimiocina CX3C/genética , Comunicação Celular , Células Cultivadas , Feminino , Inflamação/imunologia , Inflamação/patologia , Inflamação/prevenção & controle , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoclastos/imunologia , Osteoclastos/patologia , Osteoporose/imunologia , Osteoporose/patologia , Osteoporose/prevenção & controle , Ovariectomia , Fenótipo , Transdução de Sinais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
9.
Theranostics ; 10(6): 2696-2713, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194829

RESUMO

Rationale: Renal cell carcinoma (RCC) accounts for about 2% of all adult cancers, and clear cell RCC (ccRCC) is the most common RCC histologic subtype. A hallmark of ccRCC is the loss of the primary cilium, a cellular antenna that senses a wide variety of signals. Loss of this key organelle in ccRCC is associated with the loss of the von Hippel-Lindau protein (VHL). However, not all mechanisms of ciliopathy have been clearly elucidated. Methods: By using RCC4 renal cancer cells and patient samples, we examined the regulation of ciliogenesis via the presence or absence of the hypoxic form of the voltage-dependent anion channel (VDAC1-ΔC) and its impact on tumor aggressiveness. Three independent cohorts were analyzed. Cohort A was from PREDIR and included 12 patients with hereditary pVHL mutations and 22 sporadic patients presenting tumors with wild-type pVHL or mutated pVHL; Cohort B included tissue samples from 43 patients with non-metastatic ccRCC who had undergone surgery; and Cohort C was composed of 375 non-metastatic ccRCC tumor samples from The Cancer Genome Atlas (TCGA) and was used for validation. The presence of VDAC1-ΔC and legumain was determined by immunoblot. Transcriptional regulation of IFT20/GLI1 expression was evaluated by qPCR. Ciliogenesis was detected using both mouse anti-acetylated α-tubulin and rabbit polyclonal ARL13B antibodies for immunofluorescence. Results: Our study defines, for the first time, a group of ccRCC patients in which the hypoxia-cleaved form of VDAC1 (VDAC1-ΔC) induces resorption of the primary cilium in a Hypoxia-Inducible Factor-1 (HIF-1)-dependent manner. An additional novel group, in which the primary cilium is re-expressed or maintained, lacked VDAC1-ΔC yet maintained glycolysis, a signature of epithelial-mesenchymal transition (EMT) and more aggressive tumor progression, but was independent to VHL. Moreover, these patients were less sensitive to sunitinib, the first-line treatment for ccRCC, but were potentially suitable for immunotherapy, as indicated by the immunophenoscore and the presence of PDL1 expression. Conclusion: This study provides a new way to classify ccRCC patients and proposes potential therapeutic targets linked to metabolism and immunotherapy.


Assuntos
Carcinoma de Células Renais , Cílios , Neoplasias Renais , Canal de Ânion 1 Dependente de Voltagem/fisiologia , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Cílios/metabolismo , Cílios/patologia , Estudos de Coortes , Transição Epitelial-Mesenquimal , Feminino , Humanos , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Masculino , Pessoa de Meia-Idade , Adulto Jovem
10.
J Cell Mol Med ; 24(5): 2931-2941, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32032472

RESUMO

Arteriovenous fistulas (AVFs) are the preferred vascular access for haemodialysis of patients suffering from end-stage renal disease, a worldwide public health problem. However, they are prone to a high rate of failure due to neointimal hyperplasia and stenosis. This study aimed to determine if osteopontin (OPN) was induced in hypoxia and if OPN could be responsible for driving AVF failure. Identification of new factors that participate in remodelling of AVFs is a challenge. Three cell lines representing the cells of the three layers of the walls of arteries and veins, fibroblasts, smooth muscle cells and endothelial cells, were tested in mono- and co-culture in vitro for OPN expression and secretion in normoxia compared to hypoxia after silencing the hypoxia-inducible factors (HIF-1α, HIF-2α and HIF-1/2α) with siRNA or after treatment with an inhibitor of NF-kB. None of the cells in mono-culture showed OPN induction in hypoxia, whereas cells in co-culture secreted OPN in hypoxia. The changes in oxygenation that occur during AVF maturation up-regulate secretion of OPN through cell-cell interactions between the different cell layers that form AVF, and in turn, these promote endothelial cell proliferation and could participate in neointimal hyperplasia.


Assuntos
Fibroblastos/citologia , Células Endoteliais da Veia Umbilical Humana/citologia , Miócitos de Músculo Liso/citologia , Osteopontina/metabolismo , Hipóxia Celular/genética , Técnicas de Cocultura , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Miócitos de Músculo Liso/metabolismo , Osteopontina/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
11.
Joint Bone Spine ; 86(1): 43-47, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29654948

RESUMO

The gut microbiome is now viewed as a tissue that interacts bidirectionally with the gastrointestinal, immune, endocrine and nervous systems, affecting the cellular responses in numerous organs. Evidence is accumulating of gut microbiome involvement in a growing number of pathophysiological processes, many of which are linked to inflammatory responses. More specifically, data acquired over the last decade point to effects of the gut microbiome on bone mass regulation and on the development of bone diseases (such as osteoporosis) and of inflammatory joint diseases characterized by bone loss. Mice lacking a gut microbiome have bone mass alteration that can be reversed by gut recolonization. Changes in the gut microbiome composition have been reported in mice with estrogen-deficiency osteoporosis and have also been found in a few studies in humans. Probiotic therapy decreases bone loss in estrogen-deficient animals. The effect of the gut microbiome on bone tissue involves complex mechanisms including modulation of CD4+T cell activation, control of osteoclastogenic cytokine production and modifications in hormone levels. This complexity may contribute to explain the discrepancies observed betwwen some studies whose results vary depending on the age, gender, genetic background and treatment duration. Further elucidation of the mechanisms involved is needed. However, the available data hold promise that gut microbiome manipulation may prove of interest in the management of bone diseases.


Assuntos
Osso e Ossos/imunologia , Microbioma Gastrointestinal/imunologia , Osteoclastos/imunologia , Osteogênese/imunologia , Osteoporose/imunologia , Animais , Osso e Ossos/microbiologia , Diferenciação Celular/imunologia , Humanos , Camundongos , Osteoporose/microbiologia , Osteoporose/fisiopatologia
12.
Front Immunol ; 9: 2567, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30450105

RESUMO

Osteoclasts (OCLs) are multinucleated phagocytes of monocytic origin responsible for physiological and pathological bone resorption including aging processes, chronic inflammation and cancer. Besides bone resorption, they are also involved in the modulation of immune responses and the regulation of hematopoietic niches. Accordingly, OCLs are the subject of an increasing number of studies. Due to their rarity and the difficulty to isolate them directly ex vivo, analyses on OCLs are usually performed on in vitro differentiated cells. In this state, however, OCLs represent a minority of differentiated cells. Since up to date a reliable purification procedure is still lacking for mature OCLs, all cells present in the culture are analyzed collectively to answer OCL-specific questions. With the development of in-depth transcriptomic and proteomic analyses, such global analyses on unsorted cells can induce severe bias effects in further results. In addition, for instance, analysis on OCL immune function requires working on purified OCLs to avoid contamination effects of monocytic precursors that may persist during the culture. This clearly highlights the need for a reliable OCL purification procedure. Here, we describe a novel and reliable method to sort OCLs based on cell multinucleation while preserving cell viability. Using this method, we successfully purified multinucleated murine cells. We showed that they expressed high levels of OCL markers and retained a high capacity of bone resorption, demonstrating that these are mature OCLs. The same approach was equally applied for the purification of human mature OCLs. Comparison of purified OCLs with mononucleated cells or unsorted cells revealed significant differences in the expression of OCL-specific markers at RNA and/or protein level. This exemplifies that substantially better outcomes for OCLs are achieved after the exclusion of mononucleated cells. Our results clearly demonstrate that the in here presented procedure for the analysis and sorting of pure OCLs represents a novel, robust and reliable method for the detailed examination of bona fide mature OCLs in a range that was previously impossible. Noteworthy, this procedure will open new perspectives into the biology of osteoclasts and osteoclast-related diseases.


Assuntos
Envelhecimento/fisiologia , Células da Medula Óssea/fisiologia , Reabsorção Óssea/patologia , Separação Celular/métodos , Inflamação/patologia , Osteoclastos/fisiologia , Animais , Técnicas de Cultura de Células , Diferenciação Celular , Células Cultivadas , Hematopoese , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Reprodutibilidade dos Testes
13.
J Bone Miner Res ; 33(10): 1826-1841, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29813186

RESUMO

Andersen's syndrome is a rare disorder affecting muscle, heart, and bone that is associated with mutations leading to a loss of function of the inwardly rectifying K+ channel Kir2.1. Although the Kir2.1 function can be anticipated in excitable cells by controlling the electrical activity, its role in non-excitable cells remains to be investigated. Using Andersen's syndrome-induced pluripotent stem cells, we investigated the cellular and molecular events during the osteoblastic and chondrogenic differentiation that are affected by the loss of the Ik1 current. We show that loss of Kir2.1 channel function impairs both osteoblastic and chondrogenic processes through the downregulation of master gene expression. This downregulation is the result of an impairment of the bone morphogenetic proteins signaling pathway through dephosphorylation of the Smad proteins. Restoring Kir2.1 channel function in Andersen's syndrome cells rescued master genes expression and restored normal osteoblast and chondrocyte behavior. Our results show that Kir2.1-mediated activity controls endochondral and intramembranous ossification signaling pathways. © 2018 American Society for Bone and Mineral Research.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Condrogênese/genética , Regulação da Expressão Gênica , Osteogênese/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Transdução de Sinais/genética , Síndrome de Andersen/genética , Síndrome de Andersen/patologia , Biomarcadores/metabolismo , Diferenciação Celular , Condrócitos/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Matriz Extracelular/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Modelos Biológicos , Osteoblastos/metabolismo , Fosforilação , Proteína Smad1/metabolismo
14.
Stem Cell Reports ; 9(6): 1991-2004, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29198823

RESUMO

miR-184 is a highly evolutionary conserved microRNA (miRNA) from fly to human. The importance of miR-184 was underscored by the discovery that point mutations in miR-184 gene led to corneal/lens blinding disease. However, miR-184-related function in vivo remained unclear. Here, we report that the miR-184 knockout mouse model displayed increased p63 expression in line with epidermal hyperplasia, while forced expression of miR-184 by stem/progenitor cells enhanced the Notch pathway and induced epidermal hypoplasia. In line, miR-184 reduced clonogenicity and accelerated differentiation of human epidermal cells. We showed that by directly repressing cytokeratin 15 (K15) and FIH1, miR-184 induces Notch activation and epidermal differentiation. The disease-causing miR-184C57U mutant failed to repress K15 and FIH1 and to induce Notch activation, suggesting a loss-of-function mechanism. Altogether, we propose that, by targeting K15 and FIH1, miR-184 regulates the transition from proliferation to early differentiation, while mis-expression or mutation in miR-184 results in impaired homeostasis.


Assuntos
Cegueira/genética , Diferenciação Celular/genética , Epiderme/crescimento & desenvolvimento , MicroRNAs/genética , Animais , Cegueira/patologia , Proliferação de Células/genética , Epiderme/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Queratina-15/genética , Camundongos , Camundongos Knockout , Oxigenases de Função Mista/genética , Fosfoproteínas/genética , Receptores Notch/genética , Transdução de Sinais/genética , Células-Tronco/metabolismo , Transativadores/genética
15.
Front Immunol ; 8: 1991, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29422893

RESUMO

Despite mesenchymal stromal cells (MSCs) are considered as a promising source of cells to modulate immune functions on cells from innate and adaptive immune systems, their clinical use remains restricted (few number, limited in vitro expansion, absence of a full phenotypic characterization, few insights on their in vivo fate). Standardized MSCs derived in vitro from human-induced pluripotent stem (huIPS) cells, remediating part of these issues, are considered as well as a valuable tool for therapeutic approaches, but their functions remained to be fully characterized. We generated multipotent MSCs derived from huiPS cells (huiPS-MSCs), and focusing on their immunosuppressive activity, we showed that human T-cell activation in coculture with huiPS-MSCs was significantly reduced. We also observed the generation of functional CD4+ FoxP3+ regulatory T (Treg) cells. Further tested in vivo in a model of human T-cell expansion in immune-deficient NSG mice, huiPS-MSCs immunosuppressive activity prevented the circulation and the accumulation of activated human T cells. Intracytoplasmic labeling of cytokines produced by the recovered T cells showed reduced percentages of human-differentiated T cells producing Th1 inflammatory cytokines. By contrast, T cells producing IL-10 and FoxP3+-Treg cells, absent in non-treated animals, were detected in huiPS-MSCs treated mice. For the first time, these results highlight the immunosuppressive activity of the huiPS-MSCs on human T-cell stimulation with a concomitant generation of human Treg cells in vivo. They may favor the development of new tools and strategies based on the use of huiPS cells and their derivatives for the induction of immune tolerance.

16.
J Bone Miner Res ; 31(10): 1899-1908, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27161765

RESUMO

Bone destruction is a hallmark of chronic rheumatic diseases. Although the role of osteoclasts in bone loss is clearly established, their implication in the inflammatory response has not been investigated despite their monocytic origin. Moreover, specific markers are lacking to characterize osteoclasts generated in inflammatory conditions. Here, we have explored the phenotype of inflammatory osteoclasts and their effect on CD4+ T cell responses in the context of bone destruction associated with inflammatory bowel disease. We used the well-characterized model of colitis induced by transfer of naive CD4+ T cells into Rag1-/- mice, which is associated with severe bone destruction. We set up a novel procedure to sort pure osteoclasts generated in vitro to analyze their phenotype and specific immune responses by FACS and qPCR. We demonstrated that osteoclasts generated from colitic mice induced the emergence of TNFα-producing CD4+ T cells, whereas those generated from healthy mice induced CD4+ FoxP3+ regulatory T cells, in an antigen-dependent manner. This difference is related to the osteoclast origin from monocytes or dendritic cells, to their cytokine expression pattern, and their environment. We identified CX3 CR1 as a marker of inflammatory osteoclasts and we demonstrated that the differentiation of CX3 CR1+ osteoclasts is controlled by IL-17 in vitro. This work is the first demonstration that, in addition to participating to bone destruction, osteoclasts also induce immunogenic CD4+ T cell responses upon inflammation. They highlight CX3 CR1 as a novel dual target for antiresorptive and anti-inflammatory treatment in inflammatory chronic diseases. © 2016 American Society for Bone and Mineral Research.


Assuntos
Reabsorção Óssea/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Receptor 1 de Quimiocina CX3C/biossíntese , Regulação da Expressão Gênica , Doenças Inflamatórias Intestinais/metabolismo , Osteoclastos/metabolismo , Fator de Necrose Tumoral alfa/biossíntese , Animais , Reabsorção Óssea/etiologia , Reabsorção Óssea/genética , Reabsorção Óssea/patologia , Linfócitos T CD4-Positivos/patologia , Receptor 1 de Quimiocina CX3C/genética , Doenças Inflamatórias Intestinais/complicações , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/patologia , Camundongos , Camundongos Knockout , Osteoclastos/patologia , Fator de Necrose Tumoral alfa/genética
17.
Stem Cells Dev ; 25(2): 151-9, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26573604

RESUMO

Andersen's syndrome (AS) is a rare disorder characterized by a triad of symptoms: periodic paralysis, cardiac arrhythmia, and bone developmental defects. Most of the patients carry mutations on the inward rectifier potassium channel Kir2.1 encoded by the KCNJ2 gene. kcnj2 knockout mice are lethal at birth preventing, hence, thorough investigations of the physiological and pathophysiological events. We have generated induced pluripotent stem (iPS) cells from healthy as well as from AS patient muscular biopsies using the four-gene cassette required for cellular reprogramming (Oct4, Sox2, Klf4, and c-Myc). The generated AS-iPS cells exhibited the gold standard requirement for iPS cells: expression of genetics and surface pluripotent markers, strong alkaline phosphatase activity, self-renewal, and could be differentiated by the formation of embryoid bodies (EBs) into the three germ layers. Sequencing of the entire coding sequence of the KCNJ2 gene, in AS-iPS cells, revealed that the reprogramming process did not revert the Andersen's syndrome-associated mutation. Moreover, no difference was observed between control and AS-iPS cells in terms of pluripotent markers' expression, self-renewal, and three germ layer differentiation. Interestingly, expression of osteogenic markers are lower in EB-differentiated AS-iPS compared to control iPS cells. Our results showed that the Kir2.1 channel is not important for the reprogramming process and the early step of the development in vitro. However, the osteogenic machinery appears to be hastened in AS-iPS cells, strongly indicating that the generated AS-iPS cells could be a good model to better understand the AS pathophysiology.


Assuntos
Diferenciação Celular/fisiologia , Reprogramação Celular/fisiologia , Doença de Depósito de Glicogênio Tipo IV/patologia , Células-Tronco Pluripotentes Induzidas/citologia , Comunicação Celular/fisiologia , Células Cultivadas , Corpos Embrioides/metabolismo , Fibroblastos/citologia , Camadas Germinativas/metabolismo , Humanos , Fator 4 Semelhante a Kruppel
18.
Cell Metab ; 21(3): 392-402, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25738455

RESUMO

Loss of pluripotency is a gradual event whose initiating factors are largely unknown. Here we report the earliest metabolic changes induced during the first hours of differentiation. High-resolution NMR identified 44 metabolites and a distinct metabolic transition occurring during early differentiation. Metabolic and transcriptional analyses showed that pluripotent cells produced acetyl-CoA through glycolysis and rapidly lost this function during differentiation. Importantly, modulation of glycolysis blocked histone deacetylation and differentiation in human and mouse embryonic stem cells. Acetate, a precursor of acetyl-CoA, delayed differentiation and blocked early histone deacetylation in a dose-dependent manner. Inhibitors upstream of acetyl-CoA caused differentiation of pluripotent cells, while those downstream delayed differentiation. Our results show a metabolic switch causing a loss of histone acetylation and pluripotent state during the first hours of differentiation. Our data highlight the important role metabolism plays in pluripotency and suggest that a glycolytic switch controlling histone acetylation can release stem cells from pluripotency.


Assuntos
Acetilcoenzima A/metabolismo , Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/fisiologia , Glicólise/fisiologia , Histonas/metabolismo , Acetilcoenzima A/genética , Acetilação , Animais , Diferenciação Celular/genética , Linhagem Celular , Glicólise/genética , Histonas/genética , Humanos , Camundongos , Transcrição Gênica/genética , Transcrição Gênica/fisiologia
19.
Mol Cell Biol ; 35(9): 1491-505, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25691661

RESUMO

The oxygen-limiting (hypoxic) microenvironment of tumors induces metabolic reprogramming and cell survival, but the underlying mechanisms involving mitochondria remain poorly understood. We previously demonstrated that hypoxia-inducible factor 1 mediates the hyperfusion of mitochondria by inducing Bcl-2/adenovirus E1B 19-kDa interacting protein 3 and posttranslational truncation of the mitochondrial ATP transporter outer membrane voltage-dependent anion channel 1 in hypoxic cells. In addition, we showed that truncation is associated with increased resistance to drug-induced apoptosis and is indicative of increased patient chemoresistance. We now show that silencing of the tumor suppressor TP53 decreases truncation and increases drug-induced apoptosis. We also show that TP53 regulates truncation through induction of the mitochondrial protein Mieap. While we found that truncation was independent of mitophagy, we observed local microfusion between mitochondria and endolysosomes in hypoxic cells in culture and in patients' tumor tissues. Since we found that the endolysosomal asparagine endopeptidase was responsible for truncation, we propose that it is a readout of mitochondrial-endolysosomal microfusion in hypoxia. These novel findings provide the framework for a better understanding of hypoxic cell metabolism and cell survival through mitochondrial-endolysosomal microfusion regulated by hypoxia-inducible factor 1 and TP53.


Assuntos
Lisossomos/metabolismo , Mitocôndrias/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Animais , Hipóxia Celular , Linhagem Celular , Sobrevivência Celular , Células HeLa , Células Hep G2 , Humanos , Pulmão/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Lisossomos/patologia , Proteínas de Membrana/metabolismo , Camundongos , Mitocôndrias/patologia , Proteínas Proto-Oncogênicas/metabolismo , Canal de Ânion 1 Dependente de Voltagem/análise
20.
Front Immunol ; 6: 640, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26734007

RESUMO

Osteoimmunology is an interdisciplinary research field dedicated to the study of the crosstalk between the immune and bone systems. CD4(+) T cells are central players in this crosstalk. There is an emerging understanding that CD4(+) T cells play an important role in the bone marrow (BM) under physiological and pathological conditions and modulate the differentiation of bone-resorbing osteoclasts. However, identification of the mechanisms that maintain CD4(+) T cells in the BM is still a matter of investigation. This article describes the CD4(+) T cell populations of the BM and reviews their role as osteoclastogenic population in inflammatory bowel disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA