Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Invest Dermatol ; 132(7): 1841-9, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22437311

RESUMO

Collagen V is the defective product in most cases of classical Ehlers-Danlos syndrome (EDS), a connective tissue disorder typically characterized by skin fragility and abnormal wound healing. Collagen V assembles into diverse molecular forms. The predominant α1(V)(2)α2(V) heterotrimer controls fibrillogenesis in skin and other tissues. The α1(V)(3) minor form is thought to occur in skin, but its function is unknown. To elucidate its role, we generated transgenic mice that overexpress the human α1(V)(3) homotrimer in the epidermis. The transgene-derived product is deposited as thin unstriated fibrillar material in the basement membrane zone of embryonic and perinatal epidermis and hair follicles. Accumulation of α1(V)(3)-containing fibrils leads to ultrastructural modifications at the epidermis-dermis interface and provokes changes in biomechanical properties, although not statistically significant. Using superparamagnetic immunobeads to isolate authentic suprastructures and protein-binding assays, we demonstrate that the homotrimer is part of a protein network containing collagen IV, laminin-111, and the dermal collagen VI. Our data show that the homotrimer serves as a bridging molecule that contributes to the stabilization of the epidermal-dermal interface. This finding strongly suggests that collagen V may be expressed in skin as different subtypes with important but distinct roles in matrix organization and stability.


Assuntos
Colágeno Tipo V/fisiologia , Derme/metabolismo , Epiderme/metabolismo , Animais , Fenômenos Biomecânicos , Colágeno Tipo V/química , Humanos , Camundongos , Camundongos Transgênicos , Multimerização Proteica , Pele/ultraestrutura
2.
J Biomed Biotechnol ; 2010: 376927, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20625483

RESUMO

Collagen V, a fibrillar collagen with important functions in tissues, assembles into distinct chain associations. The most abundant and ubiquitous molecular form is the heterotrimer [alpha1(V)](2)alpha2(V). In the attempt to produce high levels of recombinant collagen V heterotrimer for biomedical device uses, and to identify key factors that drive heterotrimeric chain association, several cell expression systems (yeast, insect, and mammalian cells) have been assayed by cotransfecting the human proalpha1(V) and proalpha2(V) chain cDNAs. Suprisingly, in all recombinant expression systems, the formation of [alpha1(V)](3) homotrimers was considerably favored over the heterotrimer. In addition, pepsin-sensitive proalpha2(V) chains were found in HEK-293 cell media indicating that these cells lack quality control proteins preventing collagen monomer secretion. Additional transfection with Hsp47 cDNA, encoding the collagen-specific chaperone Hsp47, did not increase heterotrimer production. Double immunofluorescence with antibodies against collagen V alpha-chains showed that, contrary to fibroblasts, collagen V alpha-chains did not colocalized intracellularly in transfected cells. Monensin treatment had no effect on the heterotrimer production. The heterotrimer production seems to require specific machinery proteins, which are not endogenously expressed in the expression systems. The different constructs and transfected cells we have generated represent useful tools to further investigate the mechanisms of collagen trimer assembly.


Assuntos
Colágeno Tipo V/biossíntese , Multimerização Proteica , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Animais , Linhagem Celular , Células Clonais , Colágeno Tipo V/química , Imunofluorescência , Proteínas de Choque Térmico HSP47/metabolismo , Humanos , Insetos/citologia , Pichia/metabolismo
4.
Biomaterials ; 28(29): 4268-76, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17618680

RESUMO

The creation of 3D scaffolds that mimic the structure of physiological tissue required for normal cell function is a major bioengineering challenge. For corneal stroma reconstruction this necessitates the creation of a stroma-like scaffold consisting of a stack of orthogonally disposed sheets of aligned collagen fibrils. This study demonstrates that such a scaffold can be built up using magnetic alignment. By allowing neutralized acid-soluble type I collagen to gel in a horizontal magnetic field (7 T) and by combining a series of gelation-rotation-gelation cycles, a scaffold of orthogonal lamellae composed of aligned collagen fibrils has been formed. Although initially dilute, the gels can be concentrated without noticeable loss in orientation. The gels are translucent but their transparency can be greatly improved by the addition of proteoglycans to the gel-forming solution. Keratocytes align by contact guidance along the direction of collagen fibrils and respect the orthogonal design of the collagen template as they penetrate into the bulk of the 3D matrix. The scaffold is a significant step towards the creation of a corneal substitute with properties resembling those of native corneal stroma.


Assuntos
Colágeno/química , Substância Própria/cirurgia , Regeneração Tecidual Guiada/métodos , Queratinócitos/química , Queratinócitos/citologia , Procedimentos Cirúrgicos Oftalmológicos/métodos , Engenharia Tecidual/métodos , Materiais Biocompatíveis/química , Proliferação de Células , Colágeno/ultraestrutura , Substância Própria/citologia , Queratinócitos/transplante , Magnetismo , Conformação Proteica
5.
Cell Tissue Res ; 327(2): 323-32, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17024418

RESUMO

Collagen V is a quantitatively minor component of collagen I fibrils and the defective product of classic Ehlers-Danlos syndrome (EDS). To provide new insights into its embryonic function, a continuous evaluation of the expression pattern of proalpha1(V), a chain common to all collagen V molecular forms, was performed by in situ hybridization of developing mouse from 7.5 days after conception (dpc) to birth. Proalpha1(V) transcripts were first detected at 8.5 dpc, signals being considerably augmented at 16.5 dpc and declining at birth. Hybridization signals were, at first, exclusively detected in the dorsal aorta wall, heart, and adnexa. At 10.5 dpc, col5a1 expression was found in the heart, dorsal aorta wall, branchial arches, mesonephrotic tubules, and intestinal mesenchyme and coincided with proalpha1(I) developmental expression. Later stages exhibited an intense signal in more restricted regions, notably the skin, the bones and vertebral column, the cornea, the tendons and ligaments, the peritoneal membranes, the umbilical cord, and the salivary gland. The data revealed the important contribution of collagen V to the development of functional connective tissues. Proalpha1(V) signals were exclusively detected in the flattened cells of the surface ectoderm at 10.5 dpc. By 12.5 dpc, when cells had become cuboidal, the signal switched to the dermal fibroblasts. Thus, type V collagen appears to contribute to epidermis differentiation. Our data also suggest that collagen V participates in bone formation and/or mineralization and in the renewal of stromal cells in the cornea. The results underscore the role of collagen V in developing embryos and provide important clues for analyzing the phenotype of mouse models for EDS.


Assuntos
Colágeno Tipo V/genética , Tecido Conjuntivo/metabolismo , Embrião de Mamíferos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Animais , Animais Recém-Nascidos , Osso e Ossos/embriologia , Osso e Ossos/metabolismo , Tecido Conjuntivo/embriologia , Córnea/embriologia , Córnea/metabolismo , Embrião de Mamíferos/embriologia , Hibridização In Situ , Mesoderma/metabolismo , Camundongos , Camundongos Endogâmicos , Sistema Musculoesquelético/embriologia , Sistema Musculoesquelético/metabolismo , Pele/embriologia , Pele/metabolismo , Fatores de Tempo , Cordão Umbilical/embriologia , Cordão Umbilical/metabolismo
6.
J Soc Biol ; 199(4): 301-11, 2005.
Artigo em Francês | MEDLINE | ID: mdl-16738524

RESUMO

The extracellular matrix is a complex network composed of macromolecules such as collagens, proteoglycans and elastin that strongly interact with each other and with cells to maintain the structural integrity of many tissues. These interactions also sustain important cell programs such as migration, proliferation, differentiation and apoptosis. The skin, and more specifically the dermis, contains an extreme diversity of macromolecules that reflects the importance of the composition and organization of the matrix components in providing physical properties and function of the tissues. The most abundant matrix components are the collagens that form a super-family of 27 different members which are divided into different subgroups. The fibrillar collagens, types I, III and V, the FACIT collagens, types XII, XIV and XVI, and collagen VI are all expressed in the collagen-rich dermis. Although the structural features of these collagens are now well characterized, their functions remain elusive. Mutations in human collagen genes give rise to numerous connective tissue diseases including dermis disorders. For example, clinical manifestations in the classical Elhers-Danlos syndrome caused by collagen V gene mutations occur predominantly in the dermis. However, the genotype-phenotype relationship is not clearly established as well as the relation between the distribution and the function of the collagens in dermis. There is no doubt that the ongoing and future work using in vivo approaches will provide new cues regarding the function of collagens in dermis.


Assuntos
Colágeno/fisiologia , Derme/química , Proteínas ADAM/deficiência , Proteínas ADAM/metabolismo , Proteína ADAMTS4 , Animais , Colágeno/química , Colágeno/classificação , Doenças do Colágeno/genética , Doenças do Colágeno/metabolismo , Doenças do Colágeno/patologia , Modelos Animais de Doenças , Síndrome de Ehlers-Danlos/metabolismo , Síndrome de Ehlers-Danlos/patologia , Matriz Extracelular/química , Matriz Extracelular/fisiologia , Genótipo , Humanos , Camundongos , Camundongos Knockout , Osteogênese Imperfeita/genética , Osteogênese Imperfeita/metabolismo , Fenótipo , Fosfopeptídeos/metabolismo , Pró-Colágeno/metabolismo , Pró-Colágeno N-Endopeptidase/deficiência , Pró-Colágeno N-Endopeptidase/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/fisiologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA