Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
FEBS Open Bio ; 12(2): 362-378, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34855305

RESUMO

Sex hormone-binding globulin (SHBG) regulates the bioavailability of sex steroid hormones in the blood. Levels of SHBG increase markedly in brown bears (Ursus arctos) during hibernation, suggesting that a key regulatory role of this protein is to quench sex steroid bioavailability in hibernation physiology. To enable characterization of ursine SHBG and a cross species comparison, we established an insect cell-based expression system for recombinant full-length ursine and human SHBG. Compared with human SHBG, we observed markedly lower secretion levels of ursine SHBG, resulting in a 10-fold difference in purified protein yield. Both human and ursine recombinant SHBG appeared as dimeric proteins in solution, with a single unfolding temperature of ~ 58 °C. The thermal stability of ursine and human SHBG increased 5.4 and 9.5 °C, respectively, in the presence of dihydrotestosterone (DHT), suggesting a difference in affinity. The dissociation constants for [3 H]DHT were determined to 0.21 ± 0.04 nm for human and 1.32 ± 0.10 nm for ursine SHBG, confirming a lower affinity of ursine SHBG. A similarly reduced affinity, determined from competitive steroid binding, was observed for most steroids. Overall, we found that ursine SHBG had similar characteristics to human SHBG, specifically, being a homodimeric glycoprotein capable of binding steroids with high affinity. Therefore, ursine SHBG likely has similar biological functions to those known for human SHBG. The determined properties of ursine SHBG will contribute to elucidating its potential regulatory role in hibernation physiology.


Assuntos
Di-Hidrotestosterona , Globulina de Ligação a Hormônio Sexual , Animais , Di-Hidrotestosterona/metabolismo , Humanos , Proteínas Recombinantes , Globulina de Ligação a Hormônio Sexual/química , Globulina de Ligação a Hormônio Sexual/metabolismo , Esteroides/metabolismo , Ursidae
2.
J Biol Chem ; 295(5): 1202-1211, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-31852737

RESUMO

Sex hormone-binding globulin (SHBG) determines the equilibrium between free and protein-bound androgens and estrogens in the blood and regulates their access to target tissues. Using crystallographic approaches and radiolabeled competitive binding-capacity assays, we report here how two nonsteroidal compounds bind to human SHBG, and how they influence androgen activity in cell culture. We found that one of these compounds, (-)3,4-divanillyltetrahydrofuran (DVT), present in stinging nettle root extracts and used as a nutraceutical, binds SHBG with relatively low affinity. By contrast, a synthetic compound, 3-(1H-imidazol-1-ylmethyl)-2phenyl-1H-indole (IPI), bound SHBG with an affinity similar to that of testosterone and estradiol. Crystal structures of SHBG in complex with DVT or IPI at 1.71-1.80 Šresolutions revealed their unique orientations in the SHBG ligand-binding pocket and suggested opportunities for the design of other nonsteroidal ligands of SHBG. As observed for estradiol but not testosterone, IPI binding to SHBG was reduced by ∼20-fold in the presence of zinc, whereas DVT binding was almost completely lost. Estradiol-dependent fibulin-2 interactions with SHBG similarly occurred for IPI-bound SHBG, but not with DVT-bound SHBG. Both DVT and IPI increased the activity of testosterone in a cell culture androgen reporter system by competitively displacing testosterone from SHBG. These findings indicate how nonsteroidal ligands of SHBG maybe designed to modulate the bioavailability of sex steroids.


Assuntos
Androgênios/metabolismo , Furanos/química , Lignina/química , Globulina de Ligação a Hormônio Sexual/química , Cristalografia por Raios X , Estradiol/química , Furanos/metabolismo , Humanos , Cinética , Ligantes , Lignina/metabolismo , Mutação , Globulina de Ligação a Hormônio Sexual/genética , Globulina de Ligação a Hormônio Sexual/metabolismo , Testosterona/química , Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA