Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Nanotheranostics ; 3(4): 177-188, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36324626

RESUMO

Background: Glioblastoma is the most lethal primary brain malignancy in adults. Standard of care treatment, consisting of temozolomide (TMZ) and adjuvant radiotherapy (RT), mostly does not prevent local recurrence. The inability of drugs to enter the brain, in particular antibody-based drugs and radiosensitizers, is a crucial limitation to effective glioblastoma therapy. Methods: Here, we developed a combined strategy using radiosensitizer gold nanoparticles coated with insulin to cross the blood-brain barrier and shuttle tumor-targeting antibodies (cetuximab) into the brain. Results: Following intravenous injection to an orthotopic glioblastoma mouse model, the nanoparticles specifically accumulated within the tumor. Combining targeted nanoparticle injection with TMZ and RT standard of care significantly inhibited tumor growth and extended survival, as compared to standard of care alone. Histological analysis of tumors showed that the combined treatment eradicated tumor cells, and decreased tumor vascularization, proliferation, and repair. Conclusions: Our findings demonstrate radiosensitizer nanoparticles that effectively deliver antibodies into the brain, target the tumor, and effectively improve standard of care treatment outcome in glioblastoma.

2.
Cell Rep ; 36(5): 109480, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34348160

RESUMO

Recent multi-omics studies show different immune tumor microenvironment (TME) compositions in glioblastoma (GBM). However, temporal comprehensive knowledge of the TME from initiation of the disease remains sparse. We use Cre recombinase (Cre)-inducible lentiviral murine GBM models to compare the cellular evolution of the immune TME in tumors initiated from different oncogenic drivers. We show that neutrophils infiltrate early during tumor progression primarily in the mesenchymal GBM model. Depleting neutrophils in vivo at the onset of disease accelerates tumor growth and reduces the median overall survival time of mice. We show that, as a tumor progresses, bone marrow-derived neutrophils are skewed toward a phenotype associated with pro-tumorigenic processes. Our findings suggest that GBM can remotely regulate systemic myeloid differentiation in the bone marrow to generate neutrophils pre-committed to a tumor-supportive phenotype. This work reveals plasticity in the systemic immune host microenvironment, suggesting an additional point of intervention in GBM treatment.


Assuntos
Medula Óssea/patologia , Neoplasias Encefálicas/patologia , Carcinogênese/patologia , Glioma/patologia , Neutrófilos/patologia , Microambiente Tumoral , Animais , Neoplasias Encefálicas/irrigação sanguínea , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Modelos Animais de Doenças , Progressão da Doença , Feminino , Glioma/irrigação sanguínea , Glioma/tratamento farmacológico , Humanos , Terapia de Imunossupressão , Integrases/metabolismo , Camundongos Endogâmicos C57BL , Mutação/genética , Estadiamento de Neoplasias , Neovascularização Patológica/patologia , Análise de Sobrevida
3.
Nat Commun ; 12(1): 3615, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-34127674

RESUMO

Glioblastoma is considered one of the most aggressive malignancies in adult and pediatric patients. Despite decades of research no curative treatment is available and it thus remains associated with a very dismal prognosis. Although recent pre-clinical and clinical studies have demonstrated the feasibility of chimeric antigen receptors (CAR) T cell immunotherapeutic approach in glioblastoma, tumor heterogeneity and antigen loss remain among one of the most important challenges to be addressed. In this study, we identify p32/gC1qR/HABP/C1qBP to be specifically expressed on the surface of glioma cells, making it a suitable tumor associated antigen for redirected CAR T cell therapy. We generate p32 CAR T cells and find them to recognize and specifically eliminate p32 expressing glioma cells and tumor derived endothelial cells in vitro and to control tumor growth in orthotopic syngeneic and xenograft mouse models. Thus, p32 CAR T cells may serve as a therapeutic option for glioblastoma patients.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Antineoplásicos/farmacologia , Glioma/imunologia , Glioma/terapia , Linfócitos T/imunologia , Idoso , Animais , Antígenos de Neoplasias/imunologia , Neoplasias Encefálicas , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Feminino , Glioblastoma/genética , Glioblastoma/patologia , Glioma/genética , Glioma/metabolismo , Humanos , Imunoterapia Adotiva , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Proteínas Mitocondriais/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/imunologia , Serina Endopeptidases/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Oncogene ; 39(46): 6990-7004, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33077835

RESUMO

Interconversion of transformed non-stem cells to cancer stem cells, termed cancer cell plasticity, contributes to intra-tumor heterogeneity and its molecular mechanisms are currently unknown. Here, we have identified Tenascin C (TNC) to be upregulated and secreted in mesenchymal glioblastoma (MES GBM) subtype with high NF-κB signaling activity. Silencing TNC decreases proliferation, migration and suppresses self-renewal of glioma stem cells. Loss of TNC in MES GBM compromises de-differentiation of transformed astrocytes and blocks the ability of glioma stem cells to differentiate into tumor derived endothelial cells (TDEC). Inhibition of NF-κB activity or TNC knockdown in tumor cells decreased their tumorigenic potential in vivo. Our results uncover a link between NF-κB activation in MES GBM and high levels of TNC in GBM extracellular matrix. We suggest that TNC plays an important role in the autocrine regulation of glioma cell plasticity and hence can be a potential molecular target for MES GBM.


Assuntos
Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Células-Tronco Mesenquimais/patologia , Células-Tronco Neoplásicas/patologia , Tenascina/metabolismo , Animais , Astrócitos/patologia , Desdiferenciação Celular , Plasticidade Celular , Transformação Celular Neoplásica/patologia , Matriz Extracelular/patologia , Feminino , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Camundongos Transgênicos , NF-kappa B/metabolismo , Tenascina/genética , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
5.
J Am Chem Soc ; 142(11): 4970-4974, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32115942

RESUMO

Photoactivation of bioactive molecules allows manipulation of cellular processes with high spatiotemporal precision. The recent emergence of visible-light excitable photoprotecting groups has the potential to further expand the established utility of the photoactivation strategy in biological applications by offering higher tissue penetration, diminished phototoxicity, and compatibility with other light-dependent techniques. Nevertheless, a critical barrier to such applications remains the significant hydrophobicity of most visible-light excitable photocaging groups. Here, we find that applying the conventional 2,6-sulfonation to meso-methyl BODIPY photocages is incompatible with their photoreaction due to an increase in the excited state barrier for photorelease. We present a simple, remote sulfonation solution to BODIPY photocages that imparts water solubility and provides control over cellular permeability while retaining their favorable spectroscopic and photoreaction properties. Peripherally disulfonated BODIPY photocages are cell impermeable, making them useful for modulation of cell-surface receptors, while monosulfonated BODIPY retains the ability to cross the cellular membrane and can modulate intracellular targets. This new approach is generalizable for controlling BODIPY localization and was validated by sensitization of mammalian cells and neurons by visible-light photoactivation of signaling molecules.


Assuntos
Alcanossulfonatos/metabolismo , Compostos de Boro/metabolismo , Corantes Fluorescentes/metabolismo , Alcanossulfonatos/síntese química , Alcanossulfonatos/efeitos da radiação , Animais , Compostos de Boro/síntese química , Compostos de Boro/efeitos da radiação , Membrana Celular/metabolismo , Dopamina/química , Dopamina/farmacologia , Portadores de Fármacos/síntese química , Portadores de Fármacos/metabolismo , Portadores de Fármacos/efeitos da radiação , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/efeitos da radiação , Células HEK293 , Hipocampo/efeitos dos fármacos , Histamina/química , Histamina/farmacologia , Humanos , Luz , Microscopia Confocal , Microscopia de Fluorescência , Estrutura Molecular , Neurônios/efeitos dos fármacos , Ratos , Solubilidade
6.
J Control Release ; 308: 109-118, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31255690

RESUMO

Tumor-selective drug conjugates can potentially improve the prognosis for patients affected by glioblastoma (GBM) - the most common and malignant type of brain cancer with no effective cure. Here we evaluated a novel tumor penetrating peptide that targets cell surface p32, LinTT1 (AKRGARSTA), as a GBM targeting ligand for systemically-administered nanoparticles. LinTT1-functionalization increased tumor homing of iron oxide nanoworms (NWs) across a panel of five GBM models ranging from infiltratively-disseminating to angiogenic phenotypes. LinTT1-NWs homed to CD31-positive tumor blood vessels, including to transdifferentiated endothelial cells, and showed co-localization with tumor macrophages and lymphatic vessels. LinTT1 functionalization also resulted in increased GBM delivery of other types of systemically-administered nanoparticles: silver nanoparticles and albumin-paclitaxel nanoparticles. Finally, LinTT1-guided proapoptotic NWs exerted strong anti-glioma activity in two models of GBM, including doubling the lifespan of the mice in an aggressive orthotopic stem cell-like GBM that recapitulates the histological hallmarks of human GBM. Our study suggests that LinTT1 targeting strategy can be used to increase GBM uptake of systemic nanoparticles for improved imaging and therapy.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Glioblastoma/tratamento farmacológico , Nanopartículas , Peptídeos/administração & dosagem , Albuminas/administração & dosagem , Albuminas/farmacocinética , Animais , Linhagem Celular Tumoral , Células Endoteliais/metabolismo , Feminino , Compostos Férricos/química , Glioblastoma/patologia , Humanos , Masculino , Nanopartículas Metálicas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Paclitaxel/administração & dosagem , Paclitaxel/farmacocinética , Peptídeos/química , Prata/química , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Sci Transl Med ; 10(455)2018 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-30135249

RESUMO

Obesity and related morbidities pose a major health threat. Obesity is associated with increased blood concentrations of the anorexigenic hormone leptin; however, obese individuals are resistant to its anorexigenic effects. We examined the phenomenon of reduced leptin signaling in a high-fat diet-induced obesity model in mice. Obesity promoted matrix metalloproteinase-2 (Mmp-2) activation in the hypothalamus, which cleaved the leptin receptor's extracellular domain and impaired leptin-mediated signaling. Deletion of Mmp-2 restored leptin receptor expression and reduced circulating leptin concentrations in obese mice. Lentiviral delivery of short hairpin RNA to silence Mmp-2 in the hypothalamus of wild-type mice prevented leptin receptor cleavage and reduced fat accumulation. In contrast, lentiviral delivery of Mmp-2 in the hypothalamus of Mmp-2-/- mice promoted leptin receptor cleavage and higher body weight. In a genetic mouse model of obesity, transduction of cleavage-resistant leptin receptor in the hypothalamus reduced the rate of weight gain compared to uninfected mice or mice infected with the wild-type receptor. Immunofluorescence analysis showed that astrocytes and agouti-related peptide neurons were responsible for Mmp-2 secretion in mice fed a high-fat diet. These results suggest a mechanism for leptin resistance through activation of Mmp-2 and subsequent cleavage of the extracellular domain of the leptin receptor.


Assuntos
Leptina/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Obesidade/metabolismo , Receptores para Leptina/metabolismo , Animais , Encéfalo/enzimologia , Dieta Hiperlipídica , Ativação Enzimática , Hipotálamo/metabolismo , Leptina/sangue , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Ratos Wistar , Transdução de Sinais , Aumento de Peso
8.
Proc Natl Acad Sci U S A ; 113(12): E1673-82, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26862173

RESUMO

Mitochondria are major suppliers of cellular energy through nutrients oxidation. Little is known about the mechanisms that enable mitochondria to cope with changes in nutrient supply and energy demand that naturally occur throughout the day. To address this question, we applied MS-based quantitative proteomics on isolated mitochondria from mice killed throughout the day and identified extensive oscillations in the mitochondrial proteome. Remarkably, the majority of cycling mitochondrial proteins peaked during the early light phase. We found that rate-limiting mitochondrial enzymes that process lipids and carbohydrates accumulate in a diurnal manner and are dependent on the clock proteins PER1/2. In this conjuncture, we uncovered daily oscillations in mitochondrial respiration that peak during different times of the day in response to different nutrients. Notably, the diurnal regulation of mitochondrial respiration was blunted in mice lacking PER1/2 or on a high-fat diet. We propose that PERIOD proteins optimize mitochondrial metabolism to daily changes in energy supply/demand and thereby, serve as a rheostat for mitochondrial nutrient utilization.


Assuntos
Ritmo Circadiano/fisiologia , Mitocôndrias Hepáticas/fisiologia , Proteínas Mitocondriais/metabolismo , Proteínas Circadianas Period/fisiologia , Animais , Ritmo Circadiano/genética , Ciclo do Ácido Cítrico , Dieta Hiperlipídica , Gorduras na Dieta/metabolismo , Transporte de Elétrons , Ácidos Graxos/metabolismo , Comportamento Alimentar/fisiologia , Perfilação da Expressão Gênica , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias Hepáticas/enzimologia , Atividade Motora , Proteínas Circadianas Period/deficiência , Proteínas Circadianas Period/genética , Proteoma , RNA Mensageiro/biossíntese , RNA Mensageiro/genética
9.
Cell Metab ; 22(5): 874-85, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26456331

RESUMO

Polyamines are essential polycations present in all living cells. Polyamine levels are maintained from the diet and de novo synthesis, and their decline with age is associated with various pathologies. Here we show that polyamine levels oscillate in a daily manner. Both clock- and feeding-dependent mechanisms regulate the daily accumulation of key enzymes in polyamine biosynthesis through rhythmic binding of BMAL1:CLOCK to conserved DNA elements. In turn, polyamines control the circadian period in cultured cells and animals by regulating the interaction between the core clock repressors PER2 and CRY1. Importantly, we found that the decline in polyamine levels with age in mice is associated with a longer circadian period that can be reversed upon polyamine supplementation in the diet. Our findings suggest a crosstalk between circadian clocks and polyamine biosynthesis and open new possibilities for nutritional interventions against the decay in clock's function with age.


Assuntos
Fatores de Transcrição ARNTL/metabolismo , Proteínas CLOCK/metabolismo , Criptocromos/metabolismo , Proteínas Circadianas Period/metabolismo , Poliaminas/metabolismo , Envelhecimento/sangue , Envelhecimento/genética , Animais , Relógios Circadianos/genética , Relógios Circadianos/fisiologia , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Comportamento Alimentar/fisiologia , Humanos , Camundongos , Células NIH 3T3
10.
Cell Metab ; 19(2): 319-30, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24506873

RESUMO

Circadian clocks play a major role in orchestrating daily physiology, and their disruption can evoke metabolic diseases such as fatty liver and obesity. To study the role of circadian clocks in lipid homeostasis, we performed an extensive lipidomic analysis of liver tissues from wild-type and clock-disrupted mice either fed ad libitum or night fed. To our surprise, a similar fraction of lipids (∼17%) oscillated in both mouse strains, most notably triglycerides, but with completely different phases. Moreover, several master lipid regulators (e.g., PPARα) and enzymes involved in triglyceride metabolism retained their circadian expression in clock-disrupted mice. Nighttime restricted feeding shifted the phase of triglyceride accumulation and resulted in ∼50% decrease in hepatic triglyceride levels in wild-type mice. Our findings suggest that circadian clocks and feeding time dictate the phase and levels of hepatic triglyceride accumulation; however, oscillations in triglycerides can persist in the absence of a functional clock.


Assuntos
Relógios Circadianos/fisiologia , Fígado/metabolismo , Triglicerídeos/metabolismo , Animais , Masculino , Camundongos , Modelos Biológicos , Reação em Cadeia da Polimerase em Tempo Real
11.
Cell Metab ; 13(5): 562-72, 2011 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-21531338

RESUMO

Molecular-level understanding of body weight control is essential for combating obesity. We show that female mice lacking tyrosine phosphatase epsilon (RPTPe) are protected from weight gain induced by high-fat food, ovariectomy, or old age and exhibit increased whole-body energy expenditure and decreased adiposity. RPTPe-deficient mice, in particular males, exhibit improved glucose homeostasis. Female nonobese RPTPe-deficient mice are leptin hypersensitive and exhibit reduced circulating leptin concentrations, suggesting that RPTPe inhibits hypothalamic leptin signaling in vivo. Leptin hypersensitivity persists in aged, ovariectomized, and high-fat-fed RPTPe-deficient mice, indicating that RPTPe helps establish obesity-associated leptin resistance. RPTPe associates with and dephosphorylates JAK2, thereby downregulating leptin receptor signaling. Leptin stimulation induces phosphorylation of hypothalamic RPTPe at its C-terminal Y695, which drives RPTPe to downregulate JAK2. RPTPe is therefore an inhibitor of hypothalamic leptin signaling in vivo, and provides controlled negative-feedback regulation of this pathway following its activation.


Assuntos
Peso Corporal , Glucose/metabolismo , Leptina/farmacologia , Proteínas Tirosina Fosfatases Classe 4 Semelhantes a Receptores/fisiologia , Receptores para Leptina/metabolismo , Transdução de Sinais , Animais , Células Cultivadas , Dieta Aterogênica , Regulação para Baixo , Feminino , Homeostase , Humanos , Hipotálamo/metabolismo , Immunoblotting , Janus Quinase 2/metabolismo , Leptina/sangue , Camundongos , Camundongos Knockout , Obesidade/etiologia , Obesidade/metabolismo , Fosforilação
12.
Stem Cells ; 26(9): 2275-86, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18556513

RESUMO

Cultured bone marrow stromal cells create an in vitro milieu supportive of long-term hemopoiesis and serve as a source for multipotent mesenchymal progenitor cells defined by their ability to differentiate into a variety of mesodermal derivatives. This study aims to examine whether the capacity to support myelopoiesis is coupled with the multipotency. Our results show that the myelopoietic supportive ability of stromal cells, whether from the bone marrow or from embryo origin, is not linked with multipotency; cell populations that possess multipotent capacity may or may not support myelopoiesis, whereas others, lacking multipotency, may possess full myelopoietic supportive ability. However, upon differentiation, the ability of multipotent mesenchymal progenitors to support myelopoiesis is varied. Osteogenic differentiation did not affect myelopoietic supportive capacity, whereas adipogenesis resulted in reduced ability to support the maintenance of myeloid progenitor cells. These differences were accompanied by a divergence in glycosylation patterns, as measured by binding to lectin microarrays; osteogenic differentiation was associated with an increased level of antennarity of N-linked glycans, whereas adipogenic differentiation caused a decrease in antennarity. Inhibition of glycosylation prior to seeding the stroma with bone marrow cells resulted in reduced capacity of the stromal cells to support the formation of cobblestone areas. Our data show that myelopoietic support is unrelated to the multipotent phenotype of cultured mesenchymal progenitors but is dependent on the choice of differentiation pathway and upon correct glycosylation of the stromal cells.


Assuntos
Células da Medula Óssea/citologia , Linhagem da Célula , Células-Tronco Mesenquimais/citologia , Células-Tronco Multipotentes/citologia , Mielopoese , Animais , Diferenciação Celular , Células Cultivadas , Glicosilação , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Células Estromais/citologia
13.
Stem Cells Dev ; 17(1): 93-106, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18225977

RESUMO

In vitro and in vivo studies implicate a series of cytokines in regulation of lymphohematopoiesis. However, direct indications for a local role of most of these cytokines within the bone marrow is lacking. In the present study, we aimed to test the contribution of a specific cytokine, activin A, a member of the transforming growth factor-beta (TGF-beta) family, to lymphohematopoiesis in mouse bone marrow. We show that mouse embryonic fibroblasts (MEFs) are indistinguishable from multipotent stromal cells (MSCs). Such MEFs overexpressing activin A, supported in vitro myelopoiesis in long-term bone marrow cultures as effectively as control MEFs. In contrast, activin A-overexpressing MEFs interfered with the in vitro generation of B lineage cells in such cultures. Thus, excessive expression in vitro of activin A, by supportive stromal cells, causes preferential maturation of myeloid rather than lymphoid cells. Moreover, the activin A-overexpressing MEFs caused an increased incidence in vivo of relatively immature B lineage cells; upon transplantation through the spleen route, MEFs engrafted the bone marrow specifically. Activin A-overexpressing MEFs accumulated in the bone marrow compartment and slowed down the progression of B cell precursors along the differentiation pathway, while sparing the myeloid population. The assay system described in this paper provides a means to assess the contribution of a wide range of molecules to hematopoiesis without perturbing the constitution of other organs.


Assuntos
Ativinas/genética , Linfócitos B/citologia , Medula Óssea , Linfopoese/genética , Células Estromais/metabolismo , Ativinas/fisiologia , Animais , Técnicas de Cultura de Células , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Células-Tronco Embrionárias , Feminino , Fibroblastos , Expressão Gênica , Camundongos , Células-Tronco Multipotentes
14.
Blood ; 109(4): 1422-32, 2007 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-17038530

RESUMO

Mesenchymal stem cells (MSCs) are widespread in adult organisms and may be involved in tissue maintenance and repair as well as in the regulation of hematopoiesis and immunologic responses. Thus, it is important to discover the factors controlling MSC renewal and differentiation. Here we report that adult MSCs express functional Toll-like receptors (TLRs), confirmed by the responses of MSCs to TLR ligands. Pam3Cys, a prototypic TLR-2 ligand, augmented interleukin-6 secretion by MSC, induced nuclear factor kappa B (NF-kappaB) translocation, reduced MSC basal motility, and increased MSC proliferation. The hallmark of MSC function is the capacity to differentiate into several mesodermal lineages. We show herein that Pam3Cys inhibited MSC differentiation into osteogenic, adipogenic, and chondrogenic cells while sparing their immunosuppressive effect. Our study therefore shows that a TLR ligand can antagonize MSC differentiation triggered by exogenous mediators and consequently maintains the cells in an undifferentiated and proliferating state in vitro. Moreover, MSCs derived from myeloid factor 88 (MyD88)-deficient mice lacked the capacity to differentiate effectively into osteogenic and chondrogenic cells. It appears that TLRs and their ligands can serve as regulators of MSC proliferation and differentiation and might affect the maintenance of MSC multipotency.


Assuntos
Células-Tronco Mesenquimais/fisiologia , Receptores Toll-Like/fisiologia , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Condrogênese , Ligantes , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/fisiologia , Osteogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA