Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 50(25): 8877-8888, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34100495

RESUMO

Three Hofmann-like metal-organic frameworks {Fe(bpac)[Pt(CN)4]}·G (bpac = 1,2-bis(4-pyridyl)acetylene) were synthesized with photoisomerizable guest molecules (G = trans-azobenzene, trans-stilbene or cis-stilbene) and were characterized by elemental analysis, thermogravimetry and powder X-ray diffraction. The insertion of guest molecules and their conformation were inferred from Raman and FTIR spectra and from single-crystal X-ray diffraction and confronted with computational simulation. The magnetic and photomagnetic behaviors of the framework are significantly altered by the different guest molecules and different conformations. On the other hand, photoisomerization of the guest molecules becomes strongly hindered by the framework.

2.
Nat Commun ; 11(1): 3611, 2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32681047

RESUMO

Temperature measurement at the nanoscale is of paramount importance in the fields of nanoscience and nanotechnology, and calls for the development of versatile, high-resolution thermometry techniques. Here, the working principle and quantitative performance of a cost-effective nanothermometer are experimentally demonstrated, using a molecular spin-crossover thin film as a surface temperature sensor, probed optically. We evidence highly reliable thermometric performance (diffraction-limited sub-µm spatial, µs temporal and 1 °C thermal resolution), which stems to a large extent from the unprecedented quality of the vacuum-deposited thin films of the molecular complex [Fe(HB(1,2,4-triazol-1-yl)3)2] used in this work, in terms of fabrication and switching endurance (>107 thermal cycles in ambient air). As such, our results not only afford for a fully-fledged nanothermometry method, but set also a forthcoming stage in spin-crossover research, which has awaited, since the visionary ideas of Olivier Kahn in the 90's, a real-world, technological application.

3.
J Phys Condens Matter ; 32(3): 034001, 2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31639105

RESUMO

The addition of various dipolar molecules is shown to affect the temperature dependence of the spin state occupancy of the much studied spin crossover Fe(II) complex, [Fe{H2B(pz)2}2(bipy)] (pz = pyrazol-1-yl, bipy = 2,2'-bipyridine). Specifically, the addition of benzimidazole results in a re-entrant spin crossover transition, i.e. the spin state starts in the mostly low spin state, then high spin state occupancy increases, and finally the high spin state occupancy decreases with increasing temperature. This behavior contrasts with that observed when the highly polar p -benzoquinonemonoimine zwitterion C6H2(…NH2)2(…O)2 was mixed with [Fe{H2B(pz)2}2(bipy)], which resulted in locking [Fe{H2B(pz)2}2(bipy)] largely into a low spin state while addition of the ethyl derivative C6H2(…NHC2H5)2(…O)2 did not appear to perturb the spin crossover transition of [Fe{H2B(pz)2}2(bipy)].

4.
Dalton Trans ; 48(45): 16853-16856, 2019 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-31693038

RESUMO

The post-synthetic reaction between p-anisaldehyde and the spin-crossover compound [Fe(NH2-trz)3](NO3)2 was explored, obtaining different degrees of transformation from 23% to full conversion by varying the reaction time. The post-synthetic SCO complexes obtained were studied by magnetometry, powder X-ray diffraction (PXRD), elemental analysis, solid state NMR and IR and compared with the corresponding compounds obtained by direct synthetic routes, revealing new spin crossover properties.

5.
Nanoscale ; 11(42): 19705-19712, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31620768

RESUMO

We report on the modulation of the electrical properties of graphene-based transistors that mirror the properties of a few nanometers thick layer made of dipolar molecules sandwiched in between the 2D material and the SiO2 dielectric substrate. The chemical composition of the films of quinonemonoimine zwitterion molecules adsorbed onto SiO2 has been explored by means of X-ray photoemission and mass spectroscopy. Graphene-based devices are then fabricated by transferring the 2D material onto the molecular film, followed by the deposition of top source-drain electrodes. The degree of supramolecular order in disordered films of dipolar molecules was found to be partially improved as a result of the electric field at low temperatures, as revealed by the emergence of hysteresis in the transfer curves of the transistors. The use of molecules from the same family, which are suitably designed to interact with the dielectric surface, results in the disappearance of the hysteresis. DFT calculations confirm that the dressing of the molecules by an external electric field exhibits multiple minimal energy landscapes that explain the thermally stabilized capacitive coupling observed. This study demonstrates that the design and exploitation of ad hoc molecules as an interlayer between a dielectric substrate and graphene represents a powerful tool for tuning the electrical properties of the 2D material. Conversely, graphene can be used as an indicator of the stability of molecular layers, by providing insight into the energetics of ordering of dipolar molecules under the effect of electrical gating.

6.
J Phys Condens Matter ; 30(30): 305503, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29916814

RESUMO

A thermal component to the soft x-ray induced spin crossover transition exists in the switching of a spin crossover compound (complex [Fe{H2B(pz)2}2(bipy)] (pz = pyrazol-1-yl, bipy = 2,2'-bipyridine) combined with the dipolar molecular additives (zwitterionic p-benzoquinonemonoimine C6H2([Formula: see text])2([Formula: see text])2). The addition of the zwitterionic molecule locks the Fe(II) complex in a largely low spin state configuration over an unusually broad temperature range that includes temperatures well above the thermal spin crossover temperature of 160 K. It is demonstrated here that the process of exciting the [Fe{H2B(pz)2}2(bipy)] moiety, in the presence of with C6H2([Formula: see text])2([Formula: see text])2, to an electronic state characteristic of the high spin state though incident x-ray fluences, has a thermal activation energies are determined to 14-18 meV for a range of mixing ratios from 1:2 to 1:10. Those activation energies are also significantly reduced as compared to values of 60-80 meV found for nanometer thin films of [Fe{H2B(pz)2}2(bipy)] on SiO2.

7.
Adv Mater ; 29(39)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28846811

RESUMO

The Fe(II) spin crossover complex [Fe{H2 B(pz)2 }2 (bipy)] (pz = pyrazol-1-yl, bipy = 2,2'-bipyridine) can be locked in a largely low-spin-state configuration over a temperature range that includes temperatures well above the thermal spin crossover temperature of 160 K. This locking of the spin state is achieved for nanometer thin films of this complex in two distinct ways: through substrate interactions with dielectric substrates such as SiO2 and Al2 O3 , or in powder samples by mixing with the strongly dipolar zwitterionic p-benzoquinonemonoimine C6 H2 (-⋯ NH2 )2 (-⋯ O)2 . Remarkably, it is found in both cases that incident X-ray fluences then restore the [Fe{H2 B(pz)2 }2 (bipy)] moiety to an electronic state characteristic of the high spin state at temperatures of 200 K to above room temperature; that is, well above the spin crossover transition temperature for the pristine powder, and well above the temperatures characteristic of light- or X-ray-induced excited-spin-state trapping. Heating slightly above room temperature allows the initial locked state to be restored. These findings, supported by theory, show how the spin crossover transition can be manipulated reversibly around room temperature by appropriate design of the electrostatic and chemical environment.

8.
Dalton Trans ; 45(36): 14080-8, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27480922

RESUMO

The stepwise reaction of a zwitterionic ligand, 4-methylamino-6-methyliminio-3-oxocyclohexa-1,4-dien-1-olate (QH2) with [Pt2(µ-Cl)2(ppy)2] (Hppy = 2-phenylpyridine) afforded a mononuclear complex, [Pt(ppy)(QH)] (1), and a dinuclear complex, [{Pt(ppy)}2(µ-Q)] (2). Using [Pd2(µ-Cl)2(ppy)2] in the second step resulted in the formation of a heterodinuclear complex, [{Pt(ppy)}(µ-Q){Pd(ppy)}] (3), which is the first heterodinuclear complex bridged by a quinonoid ligand. Single crystal X-ray diffraction analysis revealed that all three complexes adopted double-decker structures in the crystal. For 1, intermolecular N-HO interactions between uncoordinated N-H and O groups in two adjacent square-planar mononuclear units led to the formation of hydrogen-bonded dimers, which stacked to form a herringbone structure with a double-decker tetranuclear motif. For 2 and 3, dinuclear units bridged by Q(2-) formed a double-decker motif similar to that of 1, but a tetranuclear chain in the herringbone pattern was characteristic of the dinuclear complexes. PtPt (or PtPd) distances were more than 3.5 Å, twice the van der Waals radii of Pt, suggesting weak electronic metal-metal interactions in the crystal structures. Thus, the different colours observed (brown, purple, and dark green for 1, 2, and 3, respectively) mainly originated from the molecular structures. In fact, the three complexes exhibited colourful solutions of yellow, red, and green. UV-vis absorption spectroscopy and time-dependent density-functional theory (TD-DFT) calculations revealed that colour variations occurred depending on the electronic states composed of metal ions and the quinonoid ligand.

9.
J Chem Phys ; 142(10): 101921, 2015 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-25770510

RESUMO

The role of dipole-dipole interactions in the self-assembly of dipolar organic molecules on surfaces is investigated. As a model system, strongly dipolar model molecules, p-benzoquinonemonoimine zwitterions (ZI) of type C6H2(⋯ NHR)2(⋯ O)2 on crystalline coinage metal surfaces were investigated with scanning tunneling microscopy and first principles calculations. Depending on the substrate, the molecules assemble into small clusters, nano gratings, and stripes, as well as in two-dimensional islands. The alignment of the molecular dipoles in those assemblies only rarely assumes the lowest electrostatic energy configuration. Based on calculations of the electrostatic energy for various experimentally observed molecular arrangements and under consideration of computed dipole moments of adsorbed molecules, the electrostatic energy minimization is ruled out as the driving force in the self-assembly. The structures observed are mainly the result of a competition between chemical interactions and substrate effects. The substrate's role in the self-assembly is to (i) reduce and realign the molecular dipole through charge donation and back donation involving both the molecular HOMO and LUMO, (ii) dictate the epitaxial orientation of the adsorbates, specifically so on Cu(111), and (iii) inhibit attractive forces between neighboring chains in the system ZI/Cu(111), which results in regularly spaced molecular gratings.

10.
Inorg Chem ; 53(11): 5515-26, 2014 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-24813619

RESUMO

The coordination chemistry of a new functional quinonoid zwitterion (E)-3-oxo-4-((2-(pyridin-2-yl)ethyl)amino)-6-((2-(pyridin-2-yl)ethyl)iminio)cyclohexa-1,4-dienolate (2, H2L), in which a CH2CH2 spacer connects the N substituents of the quinonoid core with a pyridine group, was explored in Pd(II) chemistry. Different coordination modes have been observed, depending on the experimental conditions and the reagents. The reaction of H2L with [Pd(µ-Cl)(dmba)]2 (dmba = o-C6H4CH2NMe2-C,N) afforded the dinuclear complex [{PdCl(dmba)}2(H2L)] (3) in which H2L acts as a NPy,NPy bidentate ligand. Deprotonation of this complex with NaH resulted in the formation of the dinuclear complex [{Pd(dmba)}2(µ-L)] (4) in which a shift of the Pd(II) centers from the NPy sites to the N,O donor sites of the zwitterion core has occurred, resulting in a N2O2 tetradentate behavior of ligand L. Reaction of 4 with HCl regenerates 3 quantitatively. Chloride abstraction from 3 with AgOTf (OTf = trifluoromethanesulfonate) resulted in loss of one of the two dmba ligands and formation of an unusual tetranuclear Pd(II) complex, [{Pd(dmba)}(µ-L)Pd]2(OTf)2 (5), in which two dinuclear entities have dimerized, one pyridine donor group from each dimer forming a bridge with the other dinuclear entity. This results in a N2, O2, NPy, NPy hexadentate behavior for the ligand L. Complexes 3 and 4 constitute an unprecedented reversible, switchable system where deprotonation or protonation promotes the reversible migration of the [Pd(dmba)](+) moieties, from the NPy sites in 3, to the N,O donor sites of the quinonoid core in 4, respectively. This switch modifies the extent of π-delocalization involving the potentially antiaromatic quinonoid moiety and is accompanied by a significant color change, from red in 3 to green in 4. The presence of uncoordinated pyridine donor groups in 4 allowed the use of this complex for the preparation of the neutral tetranuclear complex [{Pd(dmba)}2(µ-L){PdCl(dmba)}2] (6) in which 4 acts as a NPy,NPy-bidentate metalloligand toward two PdCl(dmba) moieties. Halide abstraction from 6 afforded the monocationic, tetranuclear complex [{Pd(dmba)}2(µ-L){Pd(dmba)}2(µ-Cl)]PF6 (7) in which the two Pd(dmba) moieties are connected by ligand L and a bridging chloride. By Cl/PF6 anion metathesis, it was possible to switch quantitatively from complex 6 to 7 and vice versa. All new compounds were unambiguously characterized by IR, NMR, and mass spectroscopy. Single-crystal X-ray diffraction is also available for molecules 2-5 and 7.

12.
Chem Commun (Camb) ; 48(57): 7143-5, 2012 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-22692103

RESUMO

The permanent dipole of quinonoid zwitterions changes significantly when the molecules adsorb on Ag(111) and Cu(111) surfaces. STM reveals that sub-monolayers of adsorbed molecules can exhibit parallel dipole alignment on Ag(111), in strong contrast with the antiparallel ordering prevailing in the crystalline state and retrieved on Cu(111) surfaces, which minimizes the dipoles electrostatic interaction energy. DFT shows that the rearrangement of electron density upon adsorption is a result of donation from the molecular HOMO to the surface, and back donation to the LUMO with a concomitant charge transfer that effectively reduces the overall charge dipole.

13.
J Am Chem Soc ; 134(20): 8494-506, 2012 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-22509815

RESUMO

The adsorption of molecular films made of small molecules with a large intrinsic electrical dipole has been explored. The data indicate that such dipolar molecules may be used for altering the interface dipole screening at the metal electrode interface in organic electronics. More specifically, we have investigated the surface electronic spectroscopic properties of zwitterionic molecules containing 12π electrons of the p-benzoquinonemonoimine type, C(6)H(2)(···NHR)(2)(···O)(2)(R = H (1), n-C(4)H(9) (2), C(3)H(6)-S-CH(3) (3), C(3)H(6)-O-CH(3) (4), CH(2)-C(6)H(5) (5)), adsorbed on Au. These molecules are stable zwitterions by virtue of the meta positions occupied by the nitrogen and oxygen substituents on the central ring, respectively. The structures of 2-4 have been determined by single crystal X-ray diffraction and indicate that in these molecules, two chemically connected but electronically not conjugated 6π electron subunits are present, which explains their strong dipolar character. We systematically observed that homogeneous molecular films with thickness as small as 1 nm were formed on Au, which fully cover the surface, even for a variety of R substituents. Preferential adsorption toward the patterned gold areas on SiO(2) substrates was found with 4. Optimum self-assembling of 2 and 5 results in ordered close packed films, which exhibit n-type character, based on the position of the Fermi level close to the conduction band minimum, suggesting high conductivity properties. This new type of self-assembled molecular films offers interesting possibilities for engineering metal-organic interfaces, of critical importance for organic electronics.

14.
Artigo em Inglês | MEDLINE | ID: mdl-24385866

RESUMO

There is compelling evidence of electron pockets, at the Fermi level, in the band structure for an organic zwitterion molecule of the p-benzoquinonemonoimine type. The electronic structure of the zwitterion molecular film has a definite, although small, density of states evident at the Fermi level as well as a nonzero inner potential and thus is very different from a true insulator. In spite of a small Brillouin zone, significant band width is observed in the intermolecular band dispersion. The results demonstrate that Bloch's theorem applies to the wave vector dependence of the electronic band structure formed from the molecular orbitals of adjacent molecules in a molecular thin film of a p-benzoquinonemonoimine type zwitterion.

15.
Phys Chem Chem Phys ; 12(35): 10329-40, 2010 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-20577691

RESUMO

We have investigated the interaction and orientation of a strongly dipolar zwitterionic p-benzoquinonemonoimine-type molecule, with a large intrinsic dipole of 10 Debye, on both conducting and on polar insulating substrates. Specifically, we deposited (6Z)-4-(butylamino)-6-(butyliminio)-3-oxocyclohexa-1,4-dien-1-olate C(6)H(2)([horiz bar, triple dot above]NHR)(2)([horiz bar, triple dot above]O)(2) where R = n-C(4)H(9), on both gold and ferroelectric lithium niobate surfaces. An influence of both transient and static electric dipoles on the zwitterionic adsorbate has been observed. For adsorption on gold, we find that the molecule bonds to the surface through the nitrogen atoms, forming films that remain fairly uniform down to thicknesses in the 1 nm range. Adsorption of this zwitterionic compound from solution on insulating, periodically poled ferroelectric lithium niobate substrates, showed preferential adsorption on one type of ferroelectric domain. For both gold and the lithium niobate substrates, the zwitterion adopts a preferential orientation with the plane of its "C(6) core" along the surface normal. This simplified geometry of strong dipole alignment provides a symmetry simplification allowing better identification of the vibrational modes responsible for Frank-Condon scattering revealed in the fine spectroscopic signature in the photoemission spectrum.

16.
Chemistry ; 14(25): 7408-20, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18680130

RESUMO

The following account summarises recent developments in the area of palladium-catalysed telomerisation and dimerisation reactions of 1,3-dienes. The most active types of catalyst, palladium-carbene complexes, were tested in pilot plant and proved to be industrially viable.


Assuntos
Alcadienos/síntese química , Indústria Química/métodos , Metano/análogos & derivados , Compostos Organometálicos/química , Paládio/química , Alcadienos/química , Catálise , Cristalografia por Raios X , Dimerização , Hidrogenação , Metano/química , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química , Projetos Piloto
17.
J Org Chem ; 73(2): 364-8, 2008 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-18076189

RESUMO

UV irradiation in the presence of thiol enables the performance of highly efficient aliphatic amines racemization, under mild conditions at 30 degrees C. The reaction proceeds via the reversible generation of prochiral alpha-aminoalkyl radicals. The latter may result either from a redox process between the thiyl radical and the amine or from direct hydrogen atom abstraction by thiyl radical. As hydrogen atom donor, the thiol plays a crucial role. While the racemization of both primary and secondary amines were fast processes, the racemization of tertiary amines was sluggish. A tentative rationale is based on the photostimulated amine-catalyzed oxidation of the thiol into the corresponding disulfide, which makes the hydrogen atom donor concentration in the reaction medium drop up to trace amount at a rate that depends on the nature of the amine.


Assuntos
Aminas/química , Compostos de Sulfidrila/química , Temperatura , Aminas/efeitos da radiação , Radicais Livres/química , Radicais Livres/efeitos da radiação , Estrutura Molecular , Oxirredução , Fotoquímica , Fatores de Tempo , Raios Ultravioleta
18.
Chemistry ; 13(5): 1594-601, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17091522

RESUMO

Starting from [{Rh(cod)Cl}(2)] and 1,3-dimesitylimidazole-2-ylidenes the novel [RhCl(cod)(carbene)] complexes 1-5 have been synthesized, characterized, and tested in the hydroaminomethylation of aromatic olefins. The influence of different ligands and reaction parameters on the catalytic activity was investigated in detail applying 1,1-diphenylethylene and piperidine as a model system. The scope and limitations of the novel catalysts is shown in the preparation of 16 biologically active 1-amino-3,3-diarylpropenes. In general, high chemo- and regioselectivity as well as good yields of the desired products were achieved.


Assuntos
Aminas/química , Metano/análogos & derivados , Compostos Organometálicos/química , Preparações Farmacêuticas/síntese química , Propano/análogos & derivados , Propano/síntese química , Ródio/química , Alcenos/química , Catálise , Hidrocarbonetos/química , Imidazóis/química , Ligantes , Metano/química , Metilação , Modelos Químicos , Estrutura Molecular , Piperidinas/química , Propano/farmacologia , Estirenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA