Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Am J Physiol Lung Cell Mol Physiol ; 325(5): L617-L627, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37786941

RESUMO

Understanding metabolic evolution underlying pulmonary arterial hypertension (PAH) development may clarify pathobiology and reveal disease-specific biomarkers. Patients with systemic sclerosis (SSc) are regularly surveilled for PAH, presenting an opportunity to examine metabolic change as disease develops in an at-risk cohort. We performed mass spectrometry-based metabolomics on longitudinal serum samples collected before and near SSc-PAH diagnosis, compared with time-matched SSc subjects without PAH, in a SSc surveillance cohort. We validated metabolic differences in a second cohort and determined metabolite-phenotype relationships. In parallel, we performed serial metabolomic and hemodynamic assessments as the disease developed in a preclinical model. For differentially expressed metabolites, we investigated corresponding gene expression in human and rodent PAH lungs. Kynurenine and its ratio to tryptophan (kyn/trp) increased over the surveillance period in patients with SSc who developed PAH. Higher kyn/trp measured two years before diagnostic right heart catheterization increased the odds of SSc-PAH diagnosis (OR 1.57, 95% CI 1.05-2.36, P = 0.028). The slope of kyn/trp rise during SSc surveillance predicted PAH development and mortality. In both clinical and experimental PAH, higher kynurenine pathway metabolites correlated with adverse pulmonary vascular and RV measurements. In human and rodent PAH lungs, expression of TDO2, which encodes tryptophan 2,3 dioxygenase (TDO), a protein that catalyzes tryptophan conversion to kynurenine, was significantly upregulated and tightly correlated with pulmonary hypertensive features. Upregulated kynurenine pathway metabolism occurs early in PAH, localizes to the lung, and may be modulated by TDO2. Kynurenine pathway metabolites may be candidate PAH biomarkers and TDO warrants exploration as a potential novel therapeutic target.NEW & NOTEWORTHY Our study shows an early increase in kynurenine pathway metabolism in at-risk subjects with systemic sclerosis who develop pulmonary arterial hypertension (PAH). We show that kynurenine pathway upregulation precedes clinical diagnosis and that this metabolic shift is associated with increased disease severity and shorter survival times. We also show that gene expression of TDO2, an enzyme that generates kynurenine from tryptophan, rises with PAH development.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Escleroderma Sistêmico , Humanos , Hipertensão Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/complicações , Cinurenina , Triptofano , Escleroderma Sistêmico/complicações , Hipertensão Pulmonar Primária Familiar , Biomarcadores
2.
Pulm Circ ; 13(3): e12260, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37404901

RESUMO

Although PAH is partially attributed to disordered metabolism, previous human studies have mostly examined circulating metabolites at a single time point, potentially overlooking crucial disease biology. Current knowledge gaps include an understanding of temporal changes that occur within and across relevant tissues, and whether observed metabolic changes might contribute to disease pathobiology. We utilized targeted tissue metabolomics in the Sugen hypoxia (SuHx) rodent model to investigate tissue-specific metabolic relationships with pulmonary hypertensive features over time using regression modeling and time-series analysis. Our hypotheses were that some metabolic changes would precede phenotypic changes, and that examining metabolic interactions across heart, lung, and liver tissues would yield insight into interconnected metabolic mechanisms. To support the relevance of our findings, we sought to establish links between SuHx tissue metabolomics and human PAH -omics data using bioinformatic predictions. Metabolic differences between and within tissue types were evident by Day 7 postinduction, demonstrating distinct tissue-specific metabolism in experimental pulmonary hypertension. Various metabolites demonstrated significant tissue-specific associations with hemodynamics and RV remodeling. Individual metabolite profiles were dynamic, and some metabolic shifts temporally preceded the emergence of overt pulmonary hypertension and RV remodeling. Metabolic interactions were observed such that abundance of several liver metabolites modulated lung and RV metabolite-phenotype relationships. Taken all together, regression analyses, pathway analyses and time-series analyses implicated aspartate and glutamate signaling and transport, glycine homeostasis, lung nucleotide abundance, and oxidative stress as relevant to early PAH pathobiology. These findings offer valuable insights into potential targets for early intervention in PAH.

3.
Viruses ; 15(6)2023 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-37376559

RESUMO

The circulation of Bluetongue (BT) and Epizootic Hemorrhagic Disease (EHD) in the Middle East has already been reported following serological analyses carried out since the 1980s, mostly on wild ruminants. Thus, an EHD virus (EHDV) strain was isolated in Bahrain in 1983 (serotype 6), and more recently, BT virus (BTV) serotypes 1, 4, 8 and 16 have been isolated in Oman. To our knowledge, no genomic sequence of these different BTV strains have been published. These same BTV or EHDV serotypes have circulated and, for some of them, are still circulating in the Mediterranean basin and/or in Europe. In this study, we used samples from domestic ruminant herds collected in Oman in 2020 and 2021 for suspected foot-and-mouth disease (FMD) to investigate the presence of BTV and EHDV in these herds. Sera and whole blood from goats, sheep and cattle were tested for the presence of viral genomes (by PCR) and antibodies (by ELISA). We were able to confirm the presence of 5 BTV serotypes (1, 4, 8, 10 and 16) and the circulation of EHDV in this territory in 2020 and 2021. The isolation of a BTV-8 strain allowed us to sequence its entire genome and to compare it with another BTV-8 strain isolated in Mayotte and with homologous BTV sequences available on GenBank.


Assuntos
Vírus Bluetongue , Doenças dos Bovinos , Vírus da Doença Hemorrágica Epizoótica , Infecções por Reoviridae , Ovinos , Bovinos , Animais , Infecções por Reoviridae/epidemiologia , Infecções por Reoviridae/veterinária , Sorogrupo , Omã/epidemiologia , Ruminantes , Cabras
4.
Am J Physiol Lung Cell Mol Physiol ; 324(6): L836-L848, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37070742

RESUMO

Right ventricular (RV) adaptation is the principal determinant of outcomes in pulmonary arterial hypertension (PAH), however, RV function is challenging to assess. RV responses to hemodynamic stressors are particularly difficult to interrogate without invasive testing. This study sought to identify metabolomic markers of in vivo right ventricular function and exercise performance in PAH. Consecutive subjects with PAH (n = 23) underwent rest and exercise right heart catheterization with multibeat pressure volume loop analysis. Pulmonary arterial blood was collected at rest and during exercise. Mass spectrometry-based targeted metabolomics were performed, and metabolic associations with hemodynamics and comprehensive measures of RV function were determined using sparse partial least squares regression. Metabolite profiles were compared with N-terminal prohormone of B-type natriuretic peptide (NT-proBNP) measurements for accuracy in modeling ventriculo-arterial parameters. Thirteen metabolites changed in abundance with exercise, including metabolites reflecting increased arginine bioavailability, precursors of catecholamine and nucleotide synthesis, and branched-chain amino acids. Higher resting arginine bioavailability predicted more favorable exercise hemodynamics and pressure-flow relationships. Subjects with more severe PAH augmented arginine bioavailability with exercise to a greater extent than subjects with less severe PAH. We identified relationships between kynurenine pathway metabolism and impaired ventriculo-arterial coupling, worse RV diastolic function, lower RV contractility, diminished RV contractility with exercise, and RV dilation with exercise. Metabolite profiles outperformed NT-proBNP in modeling RV contractility, diastolic function, and exercise performance. Specific metabolite profiles correspond to RV functional measurements only obtainable via invasive pressure-volume loop analysis and predict RV responses to exercise. Metabolic profiling may inform discovery of RV functional biomarkers.NEW & NOTEWORTHY In this cohort of patients with pulmonary arterial hypertension (PAH), we investigate metabolomic associations with comprehensive right ventricular (RV) functional measurements derived from multibeat RV pressure-volume loop analysis. Our results show that tryptophan metabolism, particularly the kynurenine pathway, is linked to intrinsic RV function and PAH pathobiology. Findings also highlight the importance of arginine bioavailability in the cardiopulmonary system's response to exercise stress. Metabolite profiles selected via unbiased analysis outperformed N-terminal prohormone of B-type natriuretic peptide (NT-proBNP) in predicting load-independent measures of RV function at rest and cardiopulmonary system performance under stress. Overall, this work suggests the potential for select metabolites to function as disease-specific biomarkers, offers insights into PAH pathobiology, and informs discovery of potentially targetable RV-centric pathways.


Assuntos
Hipertensão Arterial Pulmonar , Disfunção Ventricular Direita , Humanos , Peptídeo Natriurético Encefálico , Função Ventricular Direita/fisiologia , Cinurenina , Hipertensão Pulmonar Primária Familiar , Biomarcadores , Arginina
5.
Pulm Circ ; 13(1): e12205, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36873460

RESUMO

In pulmonary artery hypertension (PAH), emerging evidence suggests that metabolic abnormalities may be contributing to cellular dysfunction in PAH. Metabolic abnormalities such as glycolytic shift have been observed intracellularly in several cell types in PAH, including microvacular endothelial cells (MVECs). Concurrently, metabolomics of human PAH samples has also revealed a variety of metabolic abnormalities; however the relationship between the intracellular metabolic abnormalities and the serum metabolome in PAH remains under investigation. In this study, we utilize the sugen/hypoxia (SuHx) rodent model of PAH to examine the RV, LV and MVEC intracellular metabolome (using targeted metabolomics) in normoxic and SuHx rats. We additionally validate key findings from our metabolomics experiments with data obtained from cell culture of normoxic and SuHx MVECs, as well as metabolomics of human serum samples from two different PAH patient cohorts. Taken together, our data, spanning rat serum, human serum and primary isolated rat MVECs reveal that: (1) key classes of amino acids (specifically, branched chain amino acids-BCAA) are lower in the pre-capillary (i.e., RV) serum of SuHx rats (and humans); (2) intracellular amino acid levels (in particular BCAAs) are increased in SuHx-MVECs; (3) there may be secretion rather than utilization of amino acids across the pulmonary microvasculature in PAH and (4) an oxidized glutathione gradient is present across the pulmonary vasculature, suggesting a novel fate for increased glutamine uptake (i.e., as a source of glutathione). in MVECs in PAH. In summary, these data reveal new insight into the shifts in amino acid metabolism occurring across the pulmonary circulation in PAH.

6.
Mol Cell Biochem ; 478(11): 2567-2580, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36884151

RESUMO

Breast cancer brain metastasis (BCBM) has an incidence of 10-30%. It is incurable and the biological mechanisms that promote its progression remain largely undefined. Consequently, to gain insights into BCBM processes, we have developed a spontaneous mouse model of BCBM and in this study found a 20% penetrance of macro-metastatic brain lesion formation. Considering that lipid metabolism is indispensable to metastatic progression, our goal was the mapping of lipid distributions throughout the metastatic regions of the brain. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) of lipids revealed that, relative to surrounding brain tissue, seven long-chain (13-21 carbons long) fatty acylcarnitines, as well as two phosphatidylcholines, two phosphatidylinositols two diacylglycerols, a long-chain phosphatidylethanolamine, and a long-chain sphingomyelin were highly concentrated in the metastatic brain lesion In broad terms, lipids known to be enriched in brain tissues, such as very long-chain (≥ 22 carbons in length) polyunsaturated fatty acid of phosphatidylcholines, phosphatidylethanolamine, sphingomyelins, sulfatides, phosphatidylinositol phosphates, and galactosylceramides, were not found or only found in trace amounts in the metastatic lesion and instead consistently detected in surrounding brain tissues. The data, from this mouse model, highlights an accumulation of fatty acylcarnitines as possible biological makers of a chaotic inefficient vasculature within the metastasis, resulting in relatively inadequate blood flow and disruption of fatty acid ß-oxidation due to ischemia/hypoxia.

7.
Amino Acids ; 55(1): 51-59, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36580144

RESUMO

D-Amino acids are regulatory molecules that affect biological processes. Therefore, being able to accurately detect and quantify these compounds is important for understanding their impact on nutrition and health. There is a paucity of information regarding D-amino acids in human milk. We developed a fast method for simultaneous analysis of amino acid enantiomers in human milk using liquid chromatography with tandem mass spectrometry. The method enables the separation of 41 amino acids without chemical derivatization. Our results revealed that human milk from mothers of preterm infants contains concentrations of D-amino acids that range from 0.5 to 45% that of their L-counterparts and that levels of most D-amino acids decrease as the milk production matures. Moreover, we found that Holder pasteurization of milk does not cause racemization of L-amino acids. To our knowledge, this is the first study to describe percentages of D-amino acid levels in human milk; changes in D-amino acid concentration as the milk matures; and the effect of Holder pasteurization on D- and L-amino acid concentrations in human milk.


Assuntos
Recém-Nascido Prematuro , Leite Humano , Humanos , Recém-Nascido , Lactente , Feminino , Gravidez , Leite Humano/química , Aminoácidos/análise , Colostro/química , Cromatografia Líquida , Pasteurização
8.
J Am Heart Assoc ; 11(16): e024996, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35946448

RESUMO

Background Clinical risk factors in neonatal cardiac surgery do not fully capture discrepancies in outcomes. Targeted metabolomic analysis of plasma from neonates undergoing heart surgery with cardiopulmonary bypass was performed to determine associations with clinical outcomes. Methods and Result Samples and clinical variables from 149 neonates enrolled in the Corticosteroid Therapy in Neonates Undergoing Cardiopulmonary Bypass trial with surgical treatment for congenital heart disease between 2012 and 2016 were included. Blood samples were collected before skin incision, immediately after cardiopulmonary bypass, and 12 hours after surgery. Outcomes include composite morbidity/mortality (death, extracorporeal membrane oxygenation, cardiac arrest, acute kidney injury, and/or hepatic injury) and a cardiac composite (extracorporeal membrane oxygenation, cardiac arrest, or increase in lactate level), hepatic injury, and acute kidney injury. Targeted metabolite levels were determined by high-resolution tandem liquid chromatography and mass spectrometry. Principal component and regression analyses were used to assess associations between metabolic profiles and outcomes, with 2 models created: a base clinical model and a base model+metabolites. Of the 193 metabolites examined, 40 were detected and quantified. The first principal component, principal component 1, was composed mostly of preoperative metabolites and was significantly associated with the composite morbidity/mortality, cardiac composite, and hepatic injury outcomes. In regression models, individual metabolites also improved model performance for the composite morbidity/mortality, cardiac composite, and hepatic injury outcomes. Significant disease pathways included myocardial injury (false discovery rate, 0.00091) and heart failure (false discovery rate, 0.041). Conclusions In neonatal cardiac surgery, perioperative metabolites were associated with postoperative outcomes and improved clinical model outcome associations. Preoperative metabolite levels alone may improve risk models and provide a basis for optimizing perioperative care.


Assuntos
Ponte Cardiopulmonar , Cardiopatias Congênitas , Injúria Renal Aguda/etiologia , Ponte Cardiopulmonar/efeitos adversos , Parada Cardíaca/etiologia , Cardiopatias Congênitas/cirurgia , Humanos , Recém-Nascido , Complicações Pós-Operatórias/etiologia , Resultado do Tratamento
9.
Pediatr Res ; 92(2): 466-473, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34621028

RESUMO

BACKGROUND: To investigate mechanisms of injury and recovery in neonatal encephalopathy (NE), we performed targeted metabolomic analysis of plasma using liquid chromatography with tandem mass spectrometry (LC/MS/MS) from healthy term neonates or neonates with NE. METHODS: Plasma samples from the NE (n = 45, day of life 0-1) or healthy neonatal (n = 30, ≥36 weeks gestation) cohorts had LC/MS/MS metabolomic profiling with a 193-plex targeted metabolite assay covering >366 metabolic pathways. Metabolite levels were compared to 2-year neurodevelopmental outcomes measured by the Bayley Scales of Infant and Toddler Development III (Bayley-III). RESULTS: Out of 193 metabolites, 57 met the pre-defined quality control criteria for analysis. Significant (after false discovery rate correction) KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways included aminoacyl-tRNA biosynthesis, arginine biosynthesis, and metabolism of multiple amino acids. Significant disease pathways included seizures. In regression models, histidine and C6 sugar amine were significantly associated with cognitive, motor, and language and betaine with cognitive and motor Bayley-III composite scores. The addition of histidine, C6 sugar amine, and betaine to a Sarnat score-based clinical regression model significantly improved model performance (Akaike information criterion and adjusted r2) for Bayley-III cognitive, motor, and language scores. CONCLUSIONS: Plasma metabolites may help to predict neurological outcomes in neonatal brain injury and enhance current clinical predictors. IMPACT: Plasma metabolites may help to predict neurological outcomes in NE and supplement current clinical predictors. Current metabolomics research is limited in terms of clinical application and association with long-term outcomes. Our study presents novel associations of plasma metabolites from the first 24 h of life and 2-year neurodevelopmental outcomes for infants with NE. Our metabolomics discovery provides insight into possible disease mechanisms and methods to rescue and/or supplement metabolic pathways involved in NE. Our metabolomics discovery of metabolic pathway supplementations and/or rescue mechanisms may serve as adjunctive therapies for NE.


Assuntos
Lesões Encefálicas , Doenças do Recém-Nascido , Arginina , Betaína , Histidina , Humanos , Lactente , Recém-Nascido , Metabolômica , RNA de Transferência , Açúcares , Espectrometria de Massas em Tandem
10.
J Am Soc Mass Spectrom ; 29(7): 1463-1472, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29549666

RESUMO

Matrix-assisted laser/desorption ionization (MALDI) mass spectrometry imaging (MSI) is widely used as a unique tool to record the distribution of a large range of biomolecules in tissues. 2,6-Dihydroxyacetophenone (DHA) matrix has been shown to provide efficient ionization of lipids, especially gangliosides. The major drawback for DHA as it applies to MS imaging is that it sublimes under vacuum (low pressure) at the extended time necessary to complete both high spatial and mass resolution MSI studies of whole organs. To overcome the problem of sublimation, we used an atmospheric pressure (AP)-MALDI source to obtain high spatial resolution images of lipids in the brain using a high mass resolution mass spectrometer. Additionally, the advantages of atmospheric pressure and DHA for imaging gangliosides are highlighted. The imaging of [M-H]- and [M-H2O-H]- mass peaks for GD1 gangliosides showed different distribution, most likely reflecting the different spatial distribution of GD1a and GD1b species in the brain. Graphical Abstract ᅟ.

11.
ACS Chem Neurosci ; 8(10): 2266-2274, 2017 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-28745861

RESUMO

Traumatic brain injury (TBI) is a serious public health problem and the leading cause of death in children and young adults. It also contributes to a substantial number of cases of permanent disability. As lipids make up over 50% of the brain mass and play a key role in both membrane structure and cell signaling, their profile is of particular interest. In this study, we show that advanced mass spectrometry imaging (MSI) has sufficient technical accuracy and reproducibility to demonstrate the anatomical distribution of 50 µm diameter microdomains that show changes in brain ceramide levels in a rat model of controlled cortical impact (CCI) 3 days post injury with and without treatment. Adult male Sprague-Dawley rats received one strike and were euthanized 3 days post trauma. Brain MS images showed increase in ceramides in CCI animals compared to control as well as significant reduction in ceramides in CCI treated animals, demonstrating therapeutic effect of a peptide agonist. The data also suggests the presence of diffuse changes outside of the injured area. These results shed light on the extent of biochemical and structural changes in the brain after traumatic brain injury and could help to evaluate the efficacy of treatments.


Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas/tratamento farmacológico , Ceramidas/metabolismo , Espectrometria de Massas , Animais , Biomarcadores/análise , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Lesões Encefálicas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Modelos Animais de Doenças , Masculino , Espectrometria de Massas/métodos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes
12.
J Am Soc Mass Spectrom ; 28(8): 1716-1728, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28432654

RESUMO

Mass spectrometry imaging (MSI) of tissue implanted with silver nanoparticulate (AgNP) matrix generates reproducible imaging of lipids in rodent models of disease and injury. Gas-phase production and acceleration of size-selected 8 nm AgNP is followed by controlled ion beam rastering and soft landing implantation of 500 eV AgNP into tissue. Focused 337 nm laser desorption produces high quality images for most lipid classes in rat brain tissue (in positive mode: galactoceramides, diacylglycerols, ceramides, phosphatidylcholines, cholesteryl ester, and cholesterol, and in negative ion mode: phosphatidylethanolamides, sulfatides, phosphatidylinositol, and sphingomyelins). Image reproducibility in serial sections of brain tissue is achieved within <10% tolerance by selecting argentated instead of alkali cationized ions. The imaging of brain tissues spotted with pure standards was used to demonstrate that Ag cationized ceramide and diacylglycerol ions are from intact, endogenous species. In contrast, almost all Ag cationized fatty acid ions are a result of fragmentations of numerous lipid types having the fatty acid as a subunit. Almost no argentated intact fatty acid ions come from the pure fatty acid standard on tissue. Graphical Abstract ᅟ.


Assuntos
Química Encefálica , Lipídeos/análise , Nanopartículas Metálicas/análise , Prata/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Masculino , Ratos , Ratos Sprague-Dawley
13.
J Microbiol Methods ; 132: 125-127, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27894831

RESUMO

We have developed a phenotypic method suited to the systematic screening of resistance to colistin in E. coli, including those with the mcr-1 gene, by the absence of an inhibition zone after an application of a single drop of 8mg/L colistin solution on a previously inoculated Mueller-Hinton agar.


Assuntos
Colistina/farmacologia , Farmacorresistência Bacteriana , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia
14.
ACS Chem Neurosci ; 7(8): 1148-56, 2016 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-27269520

RESUMO

Alcohol abuse is a chronic disease characterized by the consumption of alcohol at a level that interferes with physical and mental health and causes serious and persistent changes in the brain. Lipid metabolism is of particular interest due to its high concentration in the brain. Lipids are the main component of cell membranes, are involved in cell signaling, signal transduction, and energy storage. In this study, we analyzed lipid composition of chronically ethanol exposed mouse brains. Juvenile (JUV) and adult (ADU) mice were placed on a daily limited-access ethanol intake model for 52 days. After euthanasia, brains were harvested, and total lipids were extracted from brain homogenates. Samples were analyzed using high resolution mass spectrometry and processed by multivariate and univariate statistical analysis. Significant lipid changes were observed in different classes including sphingolipids, fatty acids, lysophosphatidylcholines, and other glycerophospholipids.


Assuntos
Encéfalo/efeitos dos fármacos , Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/análise , Espectrometria de Massas , Fatores Etários , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
15.
J Neurosci Methods ; 272: 19-32, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-26872743

RESUMO

BACKGROUND: Mild traumatic brain injury (TBI) is a common public health issue that may contribute to chronic degenerative disorders. Membrane lipids play a key role in tissue responses to injury, both as cell signals and as components of membrane structure and cell signaling. This study demonstrates the ability of high resolution mass spectrometry imaging (MSI) to assess sequences of responses of lipid species in a rat controlled cortical impact model for concussion. NEW METHOD: A matrix of implanted silver nanoparticles was implanted superficially in brain sections for matrix-assisted laser desorption (MALDI) imaging of 50µm diameter microdomains across unfixed cryostat sections of rat brain. Ion-mobility time-of-flight MS was used to analyze and map changes over time in brain lipid composition in a rats after Controlled Cortical Impact (CCI) TBI. RESULTS: Brain MS images showed changes in sphingolipids near the CCI site, including increased ceramides and decreased sphingomyelins, accompanied by changes in glycerophospholipids and cholesterol derivatives. The kinetics differed for each lipid class; for example ceramides increased as early as 1 day after the injury whereas other lipids changes occurred between 3 and 7 days post injury. COMPARISON WITH EXISTING METHOD(S): Silver nanoparticles MALDI matrix is a sensitive new tool for revealing previously undetectable cellular injury response and remodeling in neural, glial and vascular structure of the brain. CONCLUSIONS: Lipid biochemical and structural changes after TBI could help highlighting molecules that can be used to determine the severity of such injuries as well as to evaluate the efficacy of potential treatments.


Assuntos
Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Lipídeos , Espectrometria de Massas , Animais , Biomarcadores/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Marcadores Fiduciais , Masculino , Nanopartículas Metálicas , Ratos Sprague-Dawley , Compostos de Prata , Fatores de Tempo
16.
Metabolomics ; 11(5): 1095-1105, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26366133

RESUMO

There is a lack of comprehensive studies documenting the impact of sample collection conditions on metabolic composition of human urine. To address this issue, two experiments were performed at a 3-month interval, in which midstream urine samples from healthy individuals were collected, pooled, divided into several aliquots and kept under specific conditions (room temperature, 4 °C, with or without preservative) up to 72 h before storage at -80 °C. Samples were analyzed by high-performance liquid chromatography coupled to high-resolution mass spectrometry and bacterial contamination was monitored by turbidimetry. Multivariate analyses showed that urinary metabolic fingerprints were affected by the presence of preservatives and also by storage at room temperature from 24 to 72 h, whereas no change was observed for urine samples stored at 4 °C over a 72-h period. Investigations were then focused on 280 metabolites previously identified in urine: 19 of them were impacted by the kind of sample collection protocol in both experiments, including 12 metabolites affected by bacterial contamination and 7 exhibiting poor chemical stability. Finally, our results emphasize that the use of preservative prevents bacterial overgrowth, but does not avoid metabolite instability in solution, whereas storage at 4 °C inhibits bacterial overgrowth at least over a 72-h period and slows the chemical degradation process. Consequently, and for further LC/MS analyses, human urine samples should be kept at 4 °C if their collection is performed over 24 h.

17.
J Proteome Res ; 14(8): 3322-35, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26088811

RESUMO

Urine metabolomics is widely used for biomarker research in the fields of medicine and toxicology. As a consequence, characterization of the variations of the urine metabolome under basal conditions becomes critical in order to avoid confounding effects in cohort studies. Such physiological information is however very scarce in the literature and in metabolomics databases so far. Here we studied the influence of age, body mass index (BMI), and gender on metabolite concentrations in a large cohort of 183 adults by using liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS). We implemented a comprehensive statistical workflow for univariate hypothesis testing and modeling by orthogonal partial least-squares (OPLS), which we made available to the metabolomics community within the online Workflow4Metabolomics.org resource. We found 108 urine metabolites displaying concentration variations with either age, BMI, or gender, by integrating the results from univariate p-values and multivariate variable importance in projection (VIP). Several metabolite clusters were further evidenced by correlation analysis, and they allowed stratification of the cohort. In conclusion, our study highlights the impact of gender and age on the urinary metabolome, and thus it indicates that these factors should be taken into account for the design of metabolomics studies.


Assuntos
Biomarcadores/urina , Índice de Massa Corporal , Metaboloma , Metabolômica/métodos , Estatística como Assunto/métodos , Adulto , Biomarcadores/metabolismo , Cromatografia Líquida , Análise por Conglomerados , Estudos de Coortes , Simulação por Computador , Bases de Dados Factuais/estatística & dados numéricos , Feminino , Humanos , Internet , Análise dos Mínimos Quadrados , Masculino , Espectrometria de Massas/métodos , Pessoa de Meia-Idade , Análise Multivariada
18.
Kidney Int ; 88(1): 186-92, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25671768

RESUMO

The well-characterized cellular and structural components of the kidney show distinct regional compositions and distribution of lipids. In order to more fully analyze the renal lipidome we developed a matrix-assisted laser desorption/ionization mass spectrometry approach for imaging that may be used to pinpoint sites of changes from normal in pathological conditions. This was accomplished by implanting sagittal cryostat rat kidney sections with a stable, quantifiable and reproducible uniform layer of silver using a magnetron sputtering source to form silver nanoparticles. Thirty-eight lipid species including seven ceramides, eight diacylglycerols, 22 triacylglycerols, and cholesterol were detected and imaged in positive ion mode. Thirty-six lipid species consisting of seven sphingomyelins, 10 phosphatidylethanolamines, one phosphatidylglycerol, seven phosphatidylinositols, and 11 sulfatides were imaged in negative ion mode for a total of seventy-four high-resolution lipidome maps of the normal kidney. Thus, our approach is a powerful tool not only for studying structural changes in animal models of disease, but also for diagnosing and tracking stages of disease in human kidney tissue biopsies.


Assuntos
Rim/química , Lipídeos/análise , Nanopartículas Metálicas , Prata , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Ceramidas/análise , Colesterol/análise , Diglicerídeos/análise , Fosfatidiletanolaminas/análise , Fosfatidilgliceróis/análise , Fosfatidilinositóis/análise , Ratos , Esfingomielinas/análise , Sulfoglicoesfingolipídeos/análise , Triglicerídeos/análise
19.
ACS Chem Neurosci ; 6(2): 247-59, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25387107

RESUMO

Ceramides (CER) are involved in alcohol-induced neuroinflammation. In a mouse model of chronic alcohol exposure, 16 CER and 18 sphingomyelin (SM) concentrations from whole brain lipid extracts were measured using electrospray mass spectrometry. All 18 CER concentrations in alcohol exposed adults increased significantly (range: 25-607%); in juveniles, 6 CER decreased (range: -9 to -37%). In contrast, only three SM decreased in adult and one increased significantly in juvenile. Next, regional identification at 50 µm spatial resolution from coronal sections was obtained with matrix implanted laser desorption/ionization mass spectrometry imaging (MILDI-MSI) by implanting silver nanoparticulate matrices followed by focused laser desorption. Most of the CER and SM quantified in whole brain extracts were detected in MILDI images. Coronal sections from three brain levels show qualitative regional changes in CER-SM ion intensities, as a function of group and brain region, in cortex, striatum, accumbens, habenula, and hippocampus. Highly correlated changes in certain white matter CER-SM pairs occur in regions across all groups, including the hippocampus and the lateral (but not medial) cerebellar cortex of adult mice. Our data provide the first microscale MS evidence of regional lipid intensity variations induced by alcohol.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Depressores do Sistema Nervoso Central/administração & dosagem , Ceramidas/metabolismo , Etanol/administração & dosagem , Esfingomielinas/metabolismo , Consumo de Bebidas Alcoólicas/metabolismo , Animais , Encéfalo/crescimento & desenvolvimento , Masculino , Nanopartículas Metálicas , Camundongos Endogâmicos C57BL , Compostos de Prata , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Substância Branca/efeitos dos fármacos , Substância Branca/crescimento & desenvolvimento , Substância Branca/metabolismo
20.
Vet J ; 198(2): 398-403, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23800604

RESUMO

Histomoniasis in turkeys can be prevented by administering paromomycin sulfate, an aminoglycoside antimicrobial agent, in feed. The aim of this study was to evaluate the impact of in-feed paromomycin sulfate supplementation on the antimicrobial resistance of intestinal bacteria in turkeys. Twelve flocks of breeder turkeys were administered 100 ppm paromomycin sulfate from hatching to day 120; 12 flocks not supplemented with paromomycin were used as controls. Faecal samples were collected monthly from days 0 to 180. The resistance of Escherichia coli, Enterococcus faecium and Staphylococcus aureus to paramomycin and other antimicrobial agents was compared in paromomycin supplemented (PS) and unsupplemented (PNS) flocks. E. coli from PS birds had a significantly higher frequency of resistance to paromomycin, neomycin and kanamycin until 1 month after the end of supplementation compared to PNS birds. Resistance to amoxicillin or trimethoprim-sulfamethoxazole was also more frequent in PS turkeys. Resistance was mainly due to the presence of aph genes, which could be transmitted by conjugation, sometimes with streptomycin, tetracycline, amoxicillin, trimethoprim or sulfonamide resistance genes. Resistance to kanamycin and streptomycin in E. faecium was significantly different in PS and PNS breeders on days 60 and 90. Significantly higher frequencies of resistance to paromomycin, kanamycin, neomycin and tobramycin were observed in S. aureus isolates from PS birds. Paromomycin supplementation resulted in resistance to aminoglycosides in bacteria of PS turkeys. Co-selection for resistance to other antimicrobial agents was observed in E. coli isolates.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Infecções por Escherichia coli/veterinária , Infecções por Bactérias Gram-Positivas/veterinária , Paromomicina/farmacologia , Doenças das Aves Domésticas/tratamento farmacológico , Infecções Estafilocócicas/veterinária , Perus , Ração Animal/análise , Animais , Antibacterianos/administração & dosagem , Contagem de Colônia Microbiana/veterinária , Dieta/veterinária , Suplementos Nutricionais/análise , Enterococcus faecium/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Infecções por Bactérias Gram-Positivas/microbiologia , Testes de Sensibilidade Microbiana/veterinária , Paromomicina/administração & dosagem , Doenças das Aves Domésticas/microbiologia , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA