Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Fish Biol ; 104(5): 1366-1385, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38332628

RESUMO

Life-history traits, such as size-at-maturity, are key parameters to model population dynamics used to inform fisheries management. Fishery-induced evolution, density-dependent effects, and global warming have been shown to affect size- and age-at-maturity, and resulting spawning stock biomass (SSB) in a wide range of commercial fish stocks. Marked changes in redfish biomass and environmental conditions in the Gulf of St. Lawrence and Laurentian Channel over the past decade called for a review and update of size-at-maturity for commercially important deepwater redfish Sebastes mentella and Acadian redfish Sebastes fasciatus stocks. Following a 25-year moratorium, local redfish biomass has recently reached unprecedented levels, co-occurring with an overall warming of bottom water temperatures. Our objectives were (1) to perform a histological assessment of redfish reproduction stages, including the validation and fine-tuning of a robust visual chart to facilitate monitoring of size-at-maturity and SSB in a transforming environment, and (2) to evaluate changes in size-at-maturity in unprecedentedly strong cohorts of redfish, and consequences for stock status assessment and fisheries management. Each specimen was genetically identified to species, and gonad reproduction stages were determined by histology and macroscopic appearances. The present study enabled a robust visual chart for continued and cost-effective monitoring of redfish reproduction stages to be refined and validated, and has shown a large decrease in redfish length when 50% of the individuals are considered mature that led to an increase in estimates of SSB during the 2011-2021 period for S. mentella and S. fasciatus. These changes modified the perception of stock status, thus having significant implications for fisheries management. Given that fishery-induced evolution and community structure changes along with global warming are affecting numerous stocks worldwide, the present study outlines a major and global challenge for scientists and resources managers. As shown by our results, the monitoring and frequent updates of life-history traits in transforming environments are needed to provide reliable science advice for sustainable fisheries.


Assuntos
Tamanho Corporal , Perciformes , Maturidade Sexual , Perciformes/anatomia & histologia , Perciformes/classificação , Perciformes/crescimento & desenvolvimento , Tamanho Corporal/fisiologia , Maturidade Sexual/fisiologia , Oceanos e Mares , Pesqueiros , Gônadas/citologia , Canadá , Masculino , Feminino , Animais , Especificidade da Espécie
2.
PLoS One ; 16(2): e0239503, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33606718

RESUMO

The rate of climate change (CC) has accelerated to the point where it now affects the mid- to long-term sustainability of fishing strategies. Therefore, it is important to consider practical and effective ways to incorporate CC into fisheries advice so that the advice can be considered conditioned to CC. We developed a model to characterise the empirical relationship between a variable affected by climate and fish production. We then used model projections as a foundation for a risk analysis of CC effects on harvesting of Greenland halibut Reinhardtius hippoglossoides in the Gulf of St Lawrence, Canada. The risk-based approach quantified a) the relative change in risk of a status quo fishing strategy under various CC scenarios, and b) the change in fishery exploitation rates required to achieve a management objective over a specified time period at a level of risk considered acceptable (risk equivalent fishery exploitation advice). This empirical approach can be used to develop risk-based advice for any other external variable that affects stock production in addition to climate-related variables and it can be applied in most situations where there is an index of stock biomass and fisheries catch. Shifting the focus from process-based understanding of the responses of fish stocks to CC to quantification of how CC-contributed uncertainty can alter the risks associated with different fishing strategies and/or management options, can ensure timely delivery of robust scientific advice for fisheries under non-stationary environmental conditions.


Assuntos
Aquicultura/métodos , Conservação dos Recursos Naturais/métodos , Animais , Aquicultura/tendências , Canadá , Mudança Climática/economia , Ecossistema , Pesqueiros , Peixes , Modelos Teóricos , Dinâmica Populacional , Desenvolvimento Sustentável/economia , Desenvolvimento Sustentável/tendências
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA