Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 96(16): 6255-6263, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38588398

RESUMO

Molecular Rotational Resonance (MRR) spectroscopy is a uniquely precise tool for the determination of molecular structures of volatile compounds in mixtures, as the characteristic rotational transition frequencies of a molecule are extremely sensitive to its 3D structure through the moments of inertia in a three-dimensional coordinate system. This enables identification of the compounds based on just a few parameters that can be calculated, as opposed to, for example, mass spectrometric data, which often require expert analysis of 10-20 different signals and the use of many standards/model compounds. This paper introduces a new sampling technique for MRR, laser-induced acoustic desorption (LIAD), to allow the vaporization of nonvolatile and thermally labile analytes without the need for excessive heating or derivatization. In this proof-of-concept study, LIAD was successfully coupled to an MRR instrument to conduct measurements on seven compounds with differing polarities, molecular weights, and melting and boiling points. Identification of three isomers in a mixture was also successfully performed using LIAD/MRR. Based on these results, LIAD/MRR is demonstrated to provide a powerful approach for the identification of nonvolatile and/or thermally labile analytes with molecular weights up to 600 Da in simple mixtures, which does not require the use of reference compounds. In the future, applications to more complex mixtures, such as those relevant to pharmaceutical research, and quantitative aspects of LIAD/MRR will be reported.

2.
Mass Spectrom Rev ; 43(2): 369-408, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36727592

RESUMO

Biomass-derived degraded lignin and cellulose serve as possible alternatives to fossil fuels for energy and chemical resources. Fast pyrolysis of lignocellulosic biomass generates bio-oil that needs further refinement. However, as pyrolysis causes massive degradation to lignin and cellulose, this process produces very complex mixtures. The same applies to degradation methods other than fast pyrolysis. The ability to identify the degradation products of lignocellulosic biomass is of great importance to be able to optimize methodologies for the conversion of these mixtures to transportation fuels and valuable chemicals. Studies utilizing tandem mass spectrometry have provided invaluable, molecular-level information regarding the identities of compounds in degraded biomass. This review focuses on the molecular-level characterization of fast pyrolysis and other degradation products of lignin and cellulose via tandem mass spectrometry based on collision-activated dissociation (CAD). Many studies discussed here used model compounds to better understand both the ionization chemistry of the degradation products of lignin and cellulose and their ions' CAD reactions in mass spectrometers to develop methods for the structural characterization of the degradation products of lignocellulosic biomass. Further, model compound studies were also carried out to delineate the mechanisms of the fast pyrolysis reactions of lignocellulosic biomass. The above knowledge was used to assign likely structures to many degradation products of lignocellulosic biomass.


Assuntos
Lignina , Espectrometria de Massas em Tandem , Lignina/química , Espectrometria de Massas em Tandem/métodos , Biomassa , Celulose
3.
Food Environ Virol ; 12(4): 281-294, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32757142

RESUMO

Outside the host, viruses will eventually lose their ability to infect cells due to conformational changes that occur to proteins on the viral capsid. In order to undergo a conformational change, these proteins require energy to activate the chemical reaction that leads to the conformational change. In this study, data from the literature is used to calculate the energy required for viral inactivation for a variety of different viruses by means of the Arrhenius equation. We find that some viruses (rhinovirus, poliovirus, human immunodeficiency virus, Alkhumra hemorrhagic fever virus, and hepatitis A virus) have high inactivation energies, indicative of breaking of a chemical double bond. We also find that several viruses (respiratory syncytial virus, poliovirus, and norovirus) have nonlinear Arrhenius plots, suggesting that there is more than a single pathway for inactivation of these viruses.


Assuntos
Metabolismo Energético , Viroses/virologia , Vírus/química , Vírus/metabolismo , Animais , Capsídeo/metabolismo , Humanos , Virulência , Inativação de Vírus , Vírus/genética , Vírus/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA