Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Bacteriol ; 205(11): e0031023, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37905811

RESUMO

IMPORTANCE: With the lack of new antibiotics in the drug discovery pipeline, coupled with accelerated evolution of antibiotic resistance, new sources of antibiotics that target pathogens of clinical importance are paramount. Here, we use bacterial cytological profiling to identify the mechanism of action of the monounsaturated fatty acid (Z)-13-methyltetra-4-decenoic acid isolated from the marine bacterium Olleya marilimosa with antibacterial effects against Gram-positive bacteria. The fatty acid antibiotic was found to rapidly destabilize the cell membrane by pore formation and membrane aggregation in Bacillus subtilis, suggesting that this fatty acid may be a promising adjuvant used in combination to enhance antibiotic sensitivity.


Assuntos
Antibacterianos , Ácidos Graxos , Ácidos Graxos/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Bactérias Gram-Positivas/metabolismo , Membrana Celular/metabolismo , Bacillus subtilis/metabolismo , Testes de Sensibilidade Microbiana , Bactérias Gram-Negativas/metabolismo
2.
bioRxiv ; 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37215002

RESUMO

Reducing growth and limiting metabolism are strategies that allow bacteria to survive exposure to environmental stress and antibiotics. During infection, uropathogenic Escherichia coli (UPEC) may enter a quiescent state that enables them to reemerge after completion of successful antibiotic treatment. Many clinical isolates, including the well characterized UPEC strain CFT073, also enter a metabolite-dependent, quiescent state in vitro that is reversible with cues, including peptidoglycan-derived peptides and amino acids. Here, we show that quiescent UPEC is antibiotic tolerant and demonstrate that metabolic flux in the tricarboxylic acid (TCA) cycle regulates the UPEC quiescent state via succinyl-CoA. We also demonstrate that the transcriptional regulator complex IHF and the FtsZ-interacting protein ZapE, which is important for E. coli division during stress, are essential for UPEC to enter the quiescent state. Notably, in addition to engaging FtsZ and late-stage cell division proteins, ZapE also interacts directly with TCA cycle enzymes in bacterial two hybrid assays. We report direct interactions between succinate dehydrogenase complex subunit SdhC, the late-stage cell division protein FtsN, and ZapE. These interactions likely enable communication between oxidative metabolism and the cell division machinery in UPEC. Moreover, these interactions are conserved in an E. coli K-12 strain. This work suggests that there is coordination among the two fundamental and essential pathways that regulate overall growth, quiescence, and antibiotic susceptibility.

3.
Microbiol Resour Announc ; 12(2): e0087322, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36656017

RESUMO

Here, we announce the draft genome sequence of Vibrio parahaemolyticus strain PSU5579, isolated from a shrimp hatchery in southern Thailand during an outbreak of acute hepatopancreatic necrosis disease (AHPND). The genome contains 44 contigs with a sequence length of 5,229,426 bp, 4,861 coding sequences, and a G+C content of 45.3%.

4.
RSC Adv ; 12(53): 34531-34547, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36545587

RESUMO

Vibriosis causes serious problems and economic loss in aquaculture and human health. Investigating natural products as antivibrio agents has gained more attention to combat vibriosis. The present review highlights the chemical diversity of antivibrio isolated from bacteria, fungi, plants, and marine organisms. Based on the study covering the literature from 1985-2021, the chemical diversity ranges from alkaloids, terpenoids, polyketides, sterols, and peptides. The mechanisms of action are included inhibiting growth, interfering with biofilm formation, and disrupting of quorum sensing. Relevant summaries focusing on the source organisms and the associated bioactivity of different chemical classes are also provided. Further research on in vivo studies, toxicity, and clinical is required for the application in aquaculture and human health.

5.
ACS Omega ; 7(40): 35677-35685, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36249352

RESUMO

Infections caused by the bacterium Staphylococcus aureus continue to pose threats to human health and put a financial burden on the healthcare system. The overuse of antibiotics has contributed to mutations leading to the emergence of methicillin-resistant S. aureus, and there is a critical need for the discovery and development of new antibiotics to evade drug-resistant bacteria. Medicinal plants have shown promise as sources of new small-molecule therapeutics with potential uses against pathogenic infections. The principal Rhode Island secondary metabolite (PRISM) library is a botanical extract library generated from specimens in the URI Youngken Medicinal Garden by upper-division undergraduate students. PRISM extracts were screened for activity against strains of methicillin-susceptible S. aureus (MSSA). An extract generated from the tulip tree (Liriodendron tulipifera) demonstrated growth inhibition against MSSA, and a bioassay-guided approach identified a sesquiterpene lactone, laurenobiolide, as the active constituent. Intriguingly, its isomers, tulipinolide and epi-tulipinolide, lacked potent activity against MSSA. Laurenobiolide also proved to be more potent against MSSA than the structurally similar sesquiterpene lactones, costunolide and dehydrocostus lactone. Laurenobiolide was the most abundant in the twig bark of the tulip tree, supporting the twig bark's historical and cultural usage in poultices and teas.

6.
Cell Death Discov ; 7(1): 232, 2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34482371

RESUMO

Myeloid-derived suppressor cells (MDSCs) promote immunosuppressive activities in the tumor microenvironment (TME), resulting in increased tumor burden and diminishing the anti-tumor response of immunotherapies. While primary and metastatic tumors are typically the focal points of therapeutic development, the immune cells of the TME are differentially programmed by the tissue of the metastatic site. In particular, MDSCs are programmed uniquely within different organs in the context of tumor progression. Given that MDSC plasticity is shaped by the surrounding environment, the proteomes of MDSCs from different metastatic sites are hypothesized to be unique. A bottom-up proteomics approach using sequential window acquisition of all theoretical mass spectra (SWATH-MS) was used to quantify the proteome of CD11b+ cells derived from murine liver metastases (LM) and lung metastases (LuM). A comparative proteomics workflow was employed to compare MDSC proteins from LuM (LuM-MDSC) and LM (LM-MDSC) while also elucidating common signaling pathways, protein function, and possible drug-protein interactions. SWATH-MS identified 2516 proteins from 200 µg of sample. Of the 2516 proteins, 2367 have matching transcriptomic data. Upregulated proteins from lung and liver-derived murine CD11b+ cells with matching mRNA transcriptomic data were categorized based on target knowledge and level of drug development. Comparative proteomic analysis demonstrates that liver and lung tumor-derived MDSCs have distinct proteomes that may be subject to pharmacologic manipulation.

7.
Microbiol Resour Announc ; 10(36): e0021221, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34498923

RESUMO

We report the draft genome sequence for Pseudoalteromonas sp. strain JC3, an isolate obtained from an aquaculture facility for whiteleg shrimp (Litopenaeus vannamei). The JC3 genome suggests multiple mechanisms for microbial interactions, including a type VI secretion system and potential for antibiotic production.

8.
J Antibiot (Tokyo) ; 74(6): 370-380, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33580212

RESUMO

The emergence of multi-drug resistant pathogenic bacteria represents a serious and growing threat to national healthcare systems. Most pressing is an immediate need for the development of novel antibacterial agents to treat Gram-negative multi-drug resistant infections, including the opportunistic, hospital-derived pathogen, Acinetobacter baumannii. Herein we report a naturally occurring 1,2-benzisoxazole with minimum inhibitory concentrations as low as 6.25 µg ml-1 against clinical strains of multi-drug resistant A. baumannii and investigate its possible mechanisms of action. This molecule represents a new chemotype for antibacterial agents against A. baumannii and is easily accessed in two steps via de novo synthesis. In vitro testing of structural analogs suggest that the natural compound may already be optimized for activity against this pathogen. Our results demonstrate that supplementation of 4-hydroxybenzoate in minimal media was able to reverse 1,2-benzisoxazole's antibacterial effects in A. baumannii. A search of metabolic pathways involving 4-hydroxybenzoate coupled with molecular modeling studies implicates two enzymes, chorismate pyruvate-lyase and 4-hydroxybenzoate octaprenyltransferase, as promising leads for the target of 3,6-dihydroxy-1,2-benzisoxazole.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Bradyrhizobium/metabolismo , Antagonismo de Drogas , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estrutura Molecular , Oxo-Ácido-Liases/antagonistas & inibidores , Oxo-Ácido-Liases/química , Oxo-Ácido-Liases/metabolismo , Parabenos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos
9.
J Bacteriol ; 202(20)2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32778561

RESUMO

Uropathogenic Escherichia coli (UPEC) is the leading cause of human urinary tract infections (UTIs), and many patients experience recurrent infection after successful antibiotic treatment. The source of recurrent infections may be persistent bacterial reservoirs in vivo that are in a quiescent state and thus are not susceptible to antibiotics. Here, we show that multiple UPEC strains require a quorum to proliferate in vitro with glucose as the carbon source. At low cell density, the bacteria remain viable but enter a quiescent, nonproliferative state. Of the clinical UPEC isolates tested to date, 35% (51/145) enter this quiescent state, including isolates from the recently emerged, multidrug-resistant pandemic lineage ST131 (i.e., strain JJ1886) and isolates from the classic endemic lineage ST73 (i.e., strain CFT073). Moreover, quorum-dependent UPEC quiescence is prevented and reversed by small-molecule proliferants that stimulate colony formation. These proliferation cues include d-amino acid-containing peptidoglycan (PG) tetra- and pentapeptides, as well as high local concentrations of l-lysine and l-methionine. Peptidoglycan fragments originate from the peptidoglycan layer that supports the bacterial cell wall but are released as bacteria grow. These fragments are detected by a variety of organisms, including human cells, other diverse bacteria, and, as we show here for the first time, UPEC. Together, these results show that for UPEC, (i) sensing of PG stem peptide and uptake of l-lysine modulate the quorum-regulated decision to proliferate and (ii) quiescence can be prevented by both intra- and interspecies PG peptide signaling.IMPORTANCE Uropathogenic Escherichia coli (UPEC) is the leading cause of urinary tract infections (UTIs). During pathogenesis, UPEC cells adhere to and infiltrate bladder epithelial cells, where they may form intracellular bacterial communities (IBCs) or enter a nongrowing or slowly growing quiescent state. Here, we show in vitro that UPEC strains at low population density enter a reversible, quiescent state by halting division. Quiescent cells resume proliferation in response to sensing a quorum and detecting external signals, or cues, including peptidoglycan tetra- and pentapeptides.


Assuntos
Infecções por Escherichia coli/microbiologia , Peptidoglicano/metabolismo , Infecções Urinárias/microbiologia , Escherichia coli Uropatogênica/crescimento & desenvolvimento , Antibacterianos/uso terapêutico , Divisão Celular , Células Epiteliais/microbiologia , Humanos , Percepção de Quorum , Escherichia coli Uropatogênica/metabolismo
10.
Heliyon ; 6(4): e03693, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32258515

RESUMO

Entamoeba histolytica infects 50 million people worldwide and causes 55 thousand fatalities every year. Current anti-amebic drugs (e.g. paromomycin) work either at the level of the intestinal lumen (where trophozoites proliferate via cell divisions) or on the invasive trophozoites that have penetrated the gut or colonized internal organs (e.g. metronidazole). Some of these drugs are highly toxic to patients, have generated trophozoite resistance, or caused mutations and cancer in laboratory animals. Thus, alternative anti-amebic compounds need to be identified to minimize the side effects (on patients) or resistance (by amebas) to current treatments. The literature suggests that anthraquinones (chemicals found in medicinal plants) have antibacterial, antiparasitic, anti-inflammatory and antioxidant properties. Here we provide experimental evidence that Chinese rhubarb (Rheum palmatum) leaves' extract (rich in the anthraquinone rhein) inhibits E. histolytica trophozoite growth in vitro. In addition, from a set of ten isolated/synthetic anthraquinones (which we suspected to have anti-amebic properties), four analogs (rhein; AHHDAC = 1-amino-4-hydroxy-9, 10-dioxo-9, 10-dihydro-anthracene-2-carboxylic acid; unisol blue AS; and sennoside B) efficiently inhibited amebic growth at EIC50 concentrations comparable to metronidazole. The mechanism of action of these compounds still needs to be determined, although anthraquinones might enhance the production of toxic oxygen metabolites as it has been suggested for various protists (e.g. Leishmania, Plasmodium, Trypanosoma). Our research is the first to explore anti-amebic effects of Chinese rhubarb leaves' extract and isolated/synthetic anthraquinones on pathogenic Entamoeba.

11.
Curr Microbiol ; 77(8): 1412-1418, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32189048

RESUMO

Ectoine is widely produced by various bacteria as a natural cell protectant against environment stress, e.g., osmotic and temperature stress. Its protective properties therefore exhibit high commercial value, especially in agriculture, medicine, cosmetics, and biotechnology. Here, we successfully constructed an engineered Escherichia coli for the heterologous production of ectoine. Firstly, the ectABC genes from Halomonas elongata were introduced into E. coli MG1655 to produce ectoine without high osmolarity. Subsequently, lysA gene was deleted to weaken the competitive L-lysine biosynthesis pathway and ectoine bioconversion was further optimized, leading to an increase of ectoine titer by 16.85-fold. Finally, at the low cell density of 5 OD600/mL in Erlenmeyer flask, the concentration of extracellular ectoine was increased to 3.05 mg/mL. At the high cell density of 15 OD600/mL, 12.7 g/L of ectoine was achieved in 24 h and the overall yield is 1.27 g/g glycerol and sodium aspartate. Our study herein provides a feasible and valuable biosynthesis pathway of ectoine with a potential for large-scale industrial production using simple and cheap feedstocks.


Assuntos
Diamino Aminoácidos/biossíntese , Escherichia coli/genética , Escherichia coli/metabolismo , Redes e Vias Metabólicas , Ácido Aspártico/metabolismo , Proteínas de Bactérias/genética , Fermentação , Glicerol/metabolismo , Halomonas/genética , Microbiologia Industrial , Engenharia Metabólica
12.
Sci Rep ; 9(1): 19590, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31862919

RESUMO

Urinary tract infections (UTIs) caused by Escherichia coli create a large burden on healthcare and frequently lead to recurrent infections. Part of the success of E. coli as an uropathogenic bacterium can be attributed to its ability to form quiescent intracellular reservoirs in bladder cells and its persistence after antibiotic treatment. Cranberry juice and related products have been used for the prevention of UTIs with varying degrees of success. In this study, a group of cranberry pectic oligosaccharides (cPOS) were found to both inhibit quiescence and reduce the population of persister cells formed by the uropathogenic strain, CFT073. This is the first report detailing constituents of cranberry with the ability to modulate these important physiological aspects of uropathogenic E. coli. Further studies investigating cranberry should be keen to include oligosaccharides as part of the 'active' cocktail of chemical compounds.


Assuntos
Oligossacarídeos/química , Pectinas/química , Escherichia coli Uropatogênica/efeitos dos fármacos , Vaccinium macrocarpon/química , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Carboidratos/química , Cromatografia Líquida de Alta Pressão , Espectroscopia de Ressonância Magnética , Preparações de Plantas/farmacologia , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
13.
Mar Drugs ; 17(7)2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31266202

RESUMO

Quorum sensing (QS) antagonists have been proposed as novel therapeutic agents to combat bacterial infections. We previously reported that the secondary metabolite 3-methyl-N-(2'-phenylethyl)-butyramide, produced by a marine bacterium identified as Halobacillus salinus, inhibits QS controlled phenotypes in multiple Gram-negative reporter strains. Here we report that N-phenethyl hexanamide, a structurally-related compound produced by the marine bacterium Vibrio neptunius, similarly demonstrates QS inhibitory properties. To more fully explore structure-activity relationships within this new class of QS inhibitors, a panel of twenty analogs was synthesized and biologically evaluated. Several compounds were identified with increased attenuation of QS-regulated phenotypes, most notably N-(4-fluorophenyl)-3-phenylpropanamide against the marine pathogen Vibrio harveyi (IC50 = 1.1 µM). These findings support the opportunity to further develop substituted phenethylamides as QS inhibitors.


Assuntos
Amidas/farmacologia , Antibacterianos/farmacologia , Halobacillus/metabolismo , Percepção de Quorum/efeitos dos fármacos , Amidas/química , Amidas/metabolismo , Antibacterianos/química , Antibacterianos/metabolismo , Concentração Inibidora 50 , Metabolismo Secundário , Relação Estrutura-Atividade , Vibrio/efeitos dos fármacos , Vibrio/fisiologia
14.
Front Microbiol ; 10: 1060, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31156583

RESUMO

Larval oysters in hatcheries are susceptible to diseases caused by bacterial pathogens, including Vibrio spp. Previous studies have shown that daily addition of the probiotic Bacillus pumilus RI06-95 to water in rearing tanks increases larval survival when challenged with the pathogen Vibrio coralliilyticus. We propose that the presence of probiotics causes shifts in bacterial community structure in rearing tanks, leading to a net decrease in the relative abundance of potential pathogens. During three trials spanning the 2012-2015 hatchery seasons, larvae, tank biofilm, and rearing water samples were collected from control and probiotic-treated tanks in an oyster hatchery over a 12-day period after spawning. Samples were analyzed by 16S rRNA sequencing of the V4 or V6 regions followed by taxonomic classification, in order to determine bacterial community structures. There were significant differences in bacterial composition over time and between sample types, but no major effect of probiotics on the structure and diversity of bacterial communities (phylum level, Bray-Curtis k = 2, 95% confidence). Probiotic treatment, however, led to a higher relative percent abundance of Oceanospirillales and Bacillus spp. in water and oyster larvae. In the water, an increase in Vibrio spp. diversity in the absence of a net increase in relative read abundance suggests a likely decrease in the abundance of specific pathogenic Vibrio spp., and therefore lower chances of a disease outbreak. Co-occurrence network analysis also suggests that probiotic treatment had a systemic effect on targeted members of the bacterial community, leading to a net decrease in potentially pathogenic species.

15.
Artigo em Inglês | MEDLINE | ID: mdl-30746516

RESUMO

Thalassobius sp. I31.1 is a putative pathogen involved in epizootic shell disease in the American lobster (Homarus americanus). We report here the draft genome sequence for Thalassobius sp. I31.1 and provide insight into its metabolism and links to environmental pollutant degradation.

16.
Appl Environ Microbiol ; 85(2)2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30389771

RESUMO

Phaeobacter inhibens S4Sm acts as a probiotic bacterium against the oyster pathogen Vibrio coralliilyticus Here, we report that P. inhibens S4Sm secretes three molecules that downregulate the transcription of major virulence factors, metalloprotease genes, in V. coralliilyticus cultures. The effects of the S4Sm culture supernatant on the transcription of three genes involved in protease activity, namely, vcpA, vcpB, and vcpR (encoding metalloproteases A and B and their transcriptional regulator, respectively), were examined by reverse transcriptase quantitative PCR (qRT-PCR). The expression of vcpB and vcpR were reduced to 36% and 6.6%, respectively, compared to that in an untreated control. We constructed a V. coralliilyticus green fluorescent protein (GFP) reporter strain to detect the activity of inhibitory compounds. Using a bioassay-guided approach, the molecules responsible for V. coralliilyticus protease inhibition activity were isolated from S4Sm supernatant and identified as three N-acyl homoserine lactones (AHLs). The three AHLs are N-(3-hydroxydecanoyl)-l-homoserine lactone, N-(dodecanoyl-2,5-diene)-l-homoserine lactone, and N-(3-hydroxytetradecanoyl-7-ene)-l-homoserine lactone, and their half maximal inhibitory concentrations (IC50s) against V. coralliilyticus protease activity were 0.26 µM, 3.7 µM, and 2.9 µM, respectively. Our qRT-PCR data demonstrated that exposures to the individual AHLs reduced the transcription of vcpR and vcpB Combinations of the three AHLs (any two or all three AHLs) on V. coralliilyticus produced additive effects on protease inhibition activity. These AHL compounds may contribute to the host protective effects of S4Sm by disrupting the quorum sensing pathway that activates protease transcription of V. coralliilyticusIMPORTANCE Probiotics represent a promising alternative strategy to control infection and disease caused by marine pathogens of aquaculturally important species. Generally, the beneficial effects of probiotics include improved water quality, control of pathogenic bacteria and their virulence, stimulation of the immune system, and improved animal growth. Previously, we isolated a probiotic bacterium, Phaeobacter inhibens S4Sm, which protects oyster larvae from Vibrio coralliilyticus RE22Sm infection. We also demonstrated that both antibiotic secretion and biofilm formation play important roles in S4Sm probiotic activity. Here, we report that P. inhibens S4Sm, an alphaproteobacterium and member of the Roseobacter clade, also secretes secondary metabolites that hijack the quorum sensing ability of V. coralliilyticus RE22Sm, suppressing virulence gene expression. This finding demonstrates that probiotic bacteria can exert their host protection by using a multipronged array of behaviors that limit the ability of pathogens to become established and cause infection.


Assuntos
Acil-Butirolactonas/metabolismo , Regulação para Baixo , Regulação Bacteriana da Expressão Gênica , Rhodobacteraceae/fisiologia , Vibrio/efeitos dos fármacos , Fatores de Virulência/genética , Probióticos/química , Transcrição Gênica , Vibrio/genética , Vibrio/metabolismo , Fatores de Virulência/metabolismo
17.
Mar Drugs ; 16(6)2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29875351

RESUMO

Marine actinobacteria continue to be a rich source for the discovery of structurally diverse secondary metabolites. Here we present a new hydroxymate siderophore produced by Amycolatopsis albispora, a recently described species of this less explored actinomycete genus. Strain WP1T was isolated from sediments collected at -2945 m in the Indian Ocean. The new siderophore, designated albisporachelin, was isolated from iron depleted culture broths and the structure was established by 1D and 2D NMR and MS/MS experiments, and application of a modified Marfey's method. Albisporachelin is composed of one N-methylated-formylated/hydroxylated l-ornithine (N-Me-fh-l-Orn), one l-serine (l-Ser), one formylated/hydroxylated l-ornithine (fh-l-Orn) and a cyclo-N-methylated-hydroxylated l-ornithine (cyclo-N-Me-h-l-Orn).


Assuntos
Actinomycetales/química , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Ácidos Hidroxâmicos/química , Lipídeos/química , Ornitina/análogos & derivados , Água do Mar/microbiologia , Sideróforos/química , Oceano Índico , Ferro/química , Ornitina/química
18.
Genome Announc ; 6(18)2018 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-29724832

RESUMO

Loktanella maritima strain YPC211 was isolated from the American lobster (Homarus americanus). We report here the draft genome sequence for L. maritima YPC211 and identify genes of potential importance to its role within the microbial community.

19.
Genome Announc ; 6(17)2018 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-29700150

RESUMO

Aquimarina sp. strain I32.4 (formerly Aquimarina sp. 'homaria') is a putative pathogen involved in epizootic shell disease in the American lobster (Homarus americanus). We report here the draft genome sequence for Aquimarina sp. strain I32.4 and describe virulence factors that may provide insight into its mechanism of pathogenicity.

20.
Genome Announc ; 6(14)2018 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-29622614

RESUMO

Bowmanella denitrificans strain JL63 was isolated from a whiteleg shrimp (Litopenaeus vannamei) and was determined to have antibacterial activity against an acute hepatopancreatic necrosis disease (AHPND) strain of Vibrio parahaemolyticus Here, we report the draft genome sequence of this strain and identify genes that are potentially involved in its antibacterial activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA