Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Mater ; 36(11): 5378-5387, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38883436

RESUMO

The effects of impurities on reaction precursors for metal-organic framework (MOF) synthesis have not been studied in extensive detail. The impact of these impurities can be an important factor while considering scale-up of these materials. In this work, we study the apparently positive impact of the presence of manganese ions for the synthesis of a Co-based MOF, Massey University Framework-16 (MUF-16). The presence of a trace amount of manganese in the reaction mixture led to consistently high CO2 uptake across multiple batches. Characterization including X-ray diffraction, scanning electron microscopy, Fourier transform infrared-attenuated total reflectance, ultraviolet-visible spectroscopy, thermogravimetric analysis, X-ray photoelectron spectroscopy, and extended X-ray absorption fine structure spectroscopy led us to hypothesize that the differences in CO2 adsorption among materials with differing synthesis routes arise from variations in the local environment around the cobalt metal center. Aided by density functional theory calculations, we speculate that manganese ions get inserted into the structure during crystallization and act as catalysts for ligand substitution, improving the possibility for octahedral coordination of cobalt with the ligand, thus leading to Co-based pristine structures with higher CO2 uptakes.

2.
J Org Chem ; 88(19): 13475-13489, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37712568

RESUMO

Dioxobimanes, colloquially known as bimanes, are a well-established family of N-heterobicyclic compounds that share a characteristic core structure, 1,5-diazabicyclo[3.3.0]octadienedione, bearing two endocyclic carbonyl groups. By sequentially thionating these carbonyls in the syn and anti isomers of the known (Me,Me)dioxobimane, we were able to synthesize a series of thioxobimanes, representing the first heavy-chalcogenide bimane variants. These new compounds were extensively characterized spectroscopically and crystallographically, and their aromaticity was probed computationally. Their potential role as ligands for transition metals was demonstrated by synthesizing a representative gold(I)-thioxobimane complex.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA