Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
J Cell Mol Med ; 28(9): e18295, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38722284

RESUMO

The RNA-binding protein PNO1 plays an essential role in ribosome biogenesis. Recent studies have shown that it is involved in tumorigenesis; however, its role in hepatocellular carcinoma (HCC) is not well understood. The purpose of this study was to examine whether PNO1 can be used as a biomarker of HCC and also examine the therapeutic potential of PNO1 knockout for the treatment of HCC. PNO1 expression was upregulated in HCC and associated with poor prognosis. PNO1 expression was positively associated with tumour stage, lymph node metastasis and poor survival. PNO1 expression was significantly higher in HCC compared to that in fibrolamellar carcinoma or normal tissues. Furthermore, HCC tissues with mutant Tp53 expressed higher PNO1 than those with wild-type Tp53. PNO1 knockout suppressed cell viability, colony formation and EMT of HCC cells. Since activation of Notch signalling pathway promotes HCC, we measured the effects of PNO1 knockout on the components of Notch pathway and its targets. PNO1 knockout suppressed Notch signalling by modulating the expression of Notch ligands and their receptors, and downstream targets. PNO1 knockout also inhibited genes involved in surface adhesion, cell cycle, inflammation and chemotaxis. PNO1 knockout also inhibited colony and spheroid formation, cell migration and invasion, and markers of stem cells, pluripotency and EMT in CSCs. Overall, our data suggest that PNO1 can be used as a diagnostic and prognostic biomarker of HCC, and knockout of PNO1 by CRISPR/Cas9 can be beneficial for the management of HCC by targeting CSCs.


Assuntos
Biomarcadores Tumorais , Carcinoma Hepatocelular , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , Proteínas de Ligação a RNA , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Masculino , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Linhagem Celular Tumoral , Feminino , Prognóstico , Pessoa de Meia-Idade , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Receptores Notch/metabolismo , Receptores Notch/genética , Movimento Celular/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Transição Epitelial-Mesenquimal/genética , Proliferação de Células , Relevância Clínica
2.
Cell Death Discov ; 10(1): 106, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429272

RESUMO

Pancreatic cancer has a five-year survival rate of only 10%, mostly due to late diagnosis and limited treatment options. In patients with unresectable disease, either FOLFIRINOX, a combination of 5-fluorouracil (5-FU), oxaliplatin and irinotecan, or gemcitabine plus nab-paclitaxel combined with radiation are frontline standard regimens. However, chemo-radiation therapy has shown limited success because patients develop resistance to chemotherapy and/or radiation. In this study, we evaluated the role of pancreatic cancer stem cells (CSC) using OCT4 and SOX2, CSC markers in mouse pancreatic tumor organoids. We treated pancreatic tumor organoids with 4 or 8 Gy of radiation, 10 µM of 5-FU (5-Fluorouracil), and 100 µM 3-Bromopyruvate (3BP), a promising anti-cancer drug, as a single treatment modalities, and in combination with RT. Our results showed significant upregulation of, OCT4, and SOX2 expression in pancreatic tumor organoids treated with 4 and 8 Gy of radiation, and downregulation following 5-FU treatment. The expression of CSC markers with increasing treatment dose exhibited elevated upregulation levels to radiation and downregulation to 5-FU chemotherapy drug. Conversely, when tumor organoids were treated with a combination of 5-FU and radiation, there was a significant inhibition in SOX2 and OCT4 expression, indicating CSC self-renewal inhibition. Noticeably, we also observed that human pancreatic tumor tissues exhibited heterogeneous and aberrant OCT4 and SOX2 expression as compared to normal pancreas, indicating their potential role in pancreatic cancer growth and therapy resistance. In addition, the combination of 5-FU and radiation treatment exhibited significant inhibition of the ß-catenin pathway in pancreatic tumor organoids, resulting in sensitization to treatment and organoid death. In conclusion, our study emphasizes the crucial role of CSCs in therapeutic resistance in PC treatment. We recommend using tumor organoids as a model system to explore the impact of CSCs in PC and identify new therapeutic targets.

3.
Int J Radiat Biol ; 100(2): 256-267, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37747697

RESUMO

PURPOSE: Docetaxel (DXL), a noted radiosensitizer, is one of the few chemotherapy drugs approved for castration-resistant prostate cancer (CRPC), though only a fraction of CRPCs respond to it. CAV-1, a critical regulator of radioresistance, has been known to modulate DXL and radiation effects. Combining DXL with radiotherapy may create a synergistic anticancer effect through CAV-1 and improve CRPC patients' response to therapy. Here, we investigate the effectiveness and molecular characteristics of DXL and radiation combination therapy in vitro. MATERIALS AND METHODS: We used live/dead assays to determine the IC50 of DXL for PC3, DU-145, and TRAMP-C1 cells. Colony formation assay was used to determine the radioresponse of the same cells treated with radiation with/without IC50 DXL (4, 8, and 12 Gy). We performed gene expression analysis on public transcriptomic data collected from human-derived prostate cancer cell lines (C4-2, PC3, DU-145, and LNCaP) treated with DXL for 8, 16, and 72 hours. Cell cycle arrest and protein expression were assessed using flow cytometry and western blot, respectively. RESULTS: Compared to radiation alone, combination therapy with DXL significantly increased CRPC death in PC3 (1.48-fold, p < .0001), DU-145 (1.64-fold, p < .05), and TRAMP-C1 (1.13-fold, p < .05) at 4 Gy of radiation. Gene expression of CRPC treated with DXL revealed downregulated genes related to cell cycle regulation and upregulated genes related to immune activation and oxidative stress. Confirming the results, G2/M cell cycle arrest was significantly increased after treatment with DXL and radiation. CAV-1 protein expression was decreased after DXL treatment in a dose-dependent manner; furthermore, CAV-1 copy number was strongly associated with poor response to therapy in CRPC patients. CONCLUSIONS: Our results suggest that DXL sensitizes CRPC cells to radiation by downregulating CAV-1. DXL + radiation combination therapy may be effective at treating CRPC, especially subtypes associated with high CAV-1 expression, and should be studied further.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Docetaxel/farmacologia , Docetaxel/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/radioterapia , Linhagem Celular Tumoral , Proliferação de Células
4.
Adv Healthc Mater ; 12(31): e2301815, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37706285

RESUMO

Lipid metabolism and glycolysis play crucial roles in the progression and metastasis of cancer, and the use of 3-bromopyruvate (3-BP) as an antiglycolytic agent has shown promise in killing pancreatic cancer cells. However, developing an effective strategy to avoid chemoresistance requires the ability to probe the interaction of cancer drugs with complex tumor-associated microenvironments (TAMs). Unfortunately, no robust and multiplexed molecular imaging technology is currently available to analyze TAMs. In this study, the simultaneous profiling of three protein biomarkers using SERS nanotags and antibody-functionalized nanoparticles in a syngeneic mouse model of pancreatic cancer (PC) is demonstrated. This allows for comprehensive information about biomarkers and TAM alterations before and after treatment. These multimodal imaging techniques include surface-enhanced Raman spectroscopy (SERS), immunohistochemistry (IHC), polarized light microscopy, second harmonic generation (SHG) microscopy, fluorescence lifetime imaging microscopy (FLIM), and untargeted liquid chromatography and mass spectrometry (LC-MS) analysis. The study reveals the efficacy of 3-BP in treating pancreatic cancer and identifies drug treatment-induced lipid species remodeling and associated pathways through bioinformatics analysis.


Assuntos
Neoplasias Pancreáticas , Microambiente Tumoral , Camundongos , Animais , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/tratamento farmacológico , Microscopia de Fluorescência , Biomarcadores , Imagem Multimodal , Análise Espectral Raman
5.
JAMA Netw Open ; 6(5): e2312810, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37171822

RESUMO

Importance: Arsenic, a contaminant of groundwater and irrigated crops, is a global public health hazard. Exposure to low levels of arsenic through food extends well beyond the areas with high arsenic content in water. Objective: To identify cognitive impairments following commonly prevalent low-level arsenic exposure and characterize their underlying brain mechanisms. Design, Setting, and Participants: This multicenter population-based cohort study analyzed cross-sectional data of the Indian Consortium on Vulnerability to Externalizing Disorders and Addictions (cVEDA) cohort, recruited between November 4, 2016, and May 4, 2019. Participants aged 6 to 23 years were characterized using deep phenotyping measures of behavior, neuropsychology, psychopathology, brain neuroimaging, and exposure to developmental adversities and environmental neurotoxins. All analyses were performed between June 1, 2020, and December 31, 2021. Exposure: Arsenic levels were measured in urine as an index of exposure. Main Outcomes and Measures: Executive function measured using the cVEDA neuropsychological battery, gray matter volume (GMV) from T1-weighted magnetic resonance imaging, and functional network connectivity measures from resting state functional magnetic resonance imaging. Results: A total of 1014 participants aged 6 to 23 years (589 male [58.1%]; mean [SD] age, 14.86 [4.79] years) were included from 5 geographic locations. Sparse-partial least squares analysis was used to describe a negative association of arsenic exposure with executive function (r = -0.12 [P = 5.4 × 10-4]), brain structure (r = -0.20 [P = 1.8 × 10-8]), and functional connectivity (within network, r = -0.12 [P = 7.5 × 10-4]; between network, r = -0.23 [P = 1.8 × 10-10]). Alterations in executive function were partially mediated by GMV (b = -0.004 [95% CI, -0.007 to -0.002]) and within-network functional connectivity (b = -0.004 [95% CI, -0.008 to -0.002]). Socioeconomic status and body mass index moderated the association between arsenic and GMV, such that the association was strongest in participants with lower socioeconomic status and body mass index. Conclusions and Relevance: The findings of this cross-sectional study suggest that low-level arsenic exposure was associated with alterations in executive functioning and underlying brain correlates. These results indicate potential detrimental consequences of arsenic exposure that are below the currently recommended guidelines and may extend beyond endemic risk areas. Precision medicine approaches to study global mental health vulnerabilities highlight widespread but potentially modifiable risk factors and a mechanistic understanding of the impact of low-level arsenic exposure on brain development.


Assuntos
Arsênio , Encefalopatias , Humanos , Masculino , Criança , Adolescente , Adulto Jovem , Função Executiva , Estudos Transversais , Estudos de Coortes , Encéfalo/patologia
6.
Cell Signal ; 107: 110681, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37062436

RESUMO

Oxidative stress is a predisposing factor in Chronic Obstructive Pulmonary Disease (COPD). Specifically, pulmonary epithelial (PE) cells reduce antioxidant capacity during COPD because of the continuous production of reactive oxygen species (ROS). However, the molecular pathogenesis that governs such ROS activity is unclear. Here we show that the dysregulation of intracellular calcium concentration ([Ca2+]i) in PE cells from COPD patients, compared to the healthy PE cells, is associated with the robust functional expressions of Transient Receptor Potential Canonical (TRPC)1 and TRPC3 channels, and Ca2+ entry (SOCE) components, Stromal Interaction Molecule 1 (STIM1) and ORAI1 channels. Additionally, the elevated expression levels of fibrotic, inflammatory, oxidative, and apoptotic markers in cells from COPD patients suggest detrimental pathway activation, thereby reducing the ability of lung remodeling. To further delineate the mechanism, we used human lung epithelial cell line, A549, since the behavior of SOCE and the expression patterns of TRPC1/C3, STIM1, and ORAI1 were much like PE cells. Notably, the knockdown of TRPC1/C3 in A549 cells substantially reduced the SOCE-induced [Ca2+]i rise, and reversed the ROS-mediated oxidative, fibrotic, inflammatory, and apoptotic responses, thus confirming the role of TRPC1/C3 in SOCE driven COPD-like condition. Higher TRPC1/C3, STIM1, and ORAI1 expressions, along with a greater Ca2+ entry, via SOCE in ROS-induced A549 cells, led to the rise in oxidative, fibrotic, inflammatory, and apoptotic gene expression, specifically through the extracellular signal-regulated kinase (ERK) pathway. Abatement of TRPC1 and/or TRPC3 reduced the mobilization of [Ca2+]i and reversed apoptotic gene expression and ERK activation, signifying the involvement of TRPC1/C3. Together these data suggest that TRPC1/C3 and SOCE facilitate the COPD condition through ROS-mediated cell death, thus implicating their likely roles as potential therapeutic targets for COPD. SUMMARY: Alterations in Ca2+ signaling modalities in normal pulmonary epithelial cells exhibit COPD through oxidative stress and cellular injury, compromising repair, which was alleviated through inhibition of store-operated calcium entry. SUBJECT AREA: Calcium, ROS, Cellular signaling, lung disease.


Assuntos
Canais de Cálcio , Doença Pulmonar Obstrutiva Crônica , Humanos , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteína ORAI1/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo
7.
J Cell Mol Med ; 27(3): 365-378, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36625087

RESUMO

Growth is crucially controlled by the functional ribosomes available in cells. To meet the enhanced energy demand, cancer cells re-wire and increase their ribosome biogenesis. The RNA-binding protein PNO1, a ribosome assembly factor, plays an essential role in ribosome biogenesis. The purpose of this study was to examine whether PNO1 can be used as a biomarker for lung adenocarcinoma and also examine the molecular mechanisms by which PNO1 knockdown by CRISPR/Cas9 inhibited growth and epithelial-mesenchymal transition (EMT). The expression of PNO1 was significantly higher in lung adenocarcinoma compared to normal lung tissues. PNO1 expression in lung adenocarcinoma patients increased with stage, nodal metastasis, and smoking. Lung adenocarcinoma tissues from males expressed higher PNO1 than those from females. Furthermore, lung adenocarcinoma tissues with mutant Tp53 expressed higher PNO1 than those with wild-type Tp53, suggesting the influence of Tp53 status on PNO1 expression. PNO1 knockdown inhibited cell viability, colony formation, and EMT, and induced apoptosis. Since dysregulated signalling through the Notch receptors promotes lung adenocarcinoma, we measured the effects of PNO1 inhibition on the Notch pathway. PNO1 knockdown inhibited Notch signalling by suppressing the expression of Notch receptors, their ligands, and downstream targets. PNO1 knockdown also suppressed CCND1, p21, PTGS-2, IL-1α, IL-8, and CXCL-8 genes. Overall, our data suggest that PNO1 can be used as a diagnostic biomarker, and also can be an attractive therapeutic target for the treatment of lung adenocarcinoma.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias Pulmonares , Masculino , Feminino , Humanos , Sistemas CRISPR-Cas/genética , Adenocarcinoma de Pulmão/genética , Adenocarcinoma/patologia , Receptores Notch/genética , Receptores Notch/metabolismo , Neoplasias Pulmonares/patologia , Ribossomos/metabolismo , Ribossomos/patologia , Transição Epitelial-Mesenquimal/genética , Linhagem Celular Tumoral , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
8.
Am J Cancer Res ; 12(11): 4977-4987, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36504891

RESUMO

Pancreatic cancer (PC) is the fourth-most-deadly cancer in the United States with a 5-year survival rate of only 8%. The majority of patients with locally advanced pancreatic cancer undergo chemotherapy and/or radiation therapy (RT). However, current treatments are inadequate and novel strategies are desperately required. 3-Bromopyruvate (3-BP) is a promising anticancer drug against pancreatic cancer. It exerts potent anticancer effects by inhibiting hexokinase II enzyme (HK2) of the glycolytic pathway in cancer cells while not affecting the normal cells. 3-BP killed 95% of Panc-2 cells at 15 µM concentration and severely inhibited ATP production by disrupting the interaction between HK2 and mitochondrial Voltage Dependent Anion Channel-1 (VDAC1) protein. Electron microscopy data revealed that 3-BP severely damaged mitochondrial membrane in cancer cells. We further examined therapeutic effect of 3-BP in syngeneic mouse pancreatic cancer model by treating animals with 10, 15 and 20 mg/kg dose. 3-BP at 15 & 20 mg/kg dose level significantly reduced tumor growth by approximately 75-80% in C57BL/6 female mice. Immunohistochemistry data showed complete inhibition of hexokinase II (HK2) and TGFß, in animals treated with 3-BP drug. We also observed enhanced expression of active caspase-3 in tumor tissues exhibited apoptotic death. Flow Cytometry analysis showed significant inhibition in MDSC (CD11b) population in treated tumor which may have allowed infiltration of CD8+ T cells and inhibited tumor growth. Notably, metabolomic data also revealed severe inhibition in glycolysis, NADP, ATP and lactic acid production in cancer cells treated with 40 µM 3-BP. Importantly, we also observed inhibition in lactic acid production responsible for tumor aggression. These results provide new evidence that 3-BP severely inhibit glucose metabolism in cancer cells by blocking hexokinase II, and disrupting mitochondria by suppressing BCL2L1 in pancreatic cancer.

9.
Sci Rep ; 12(1): 11062, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35773307

RESUMO

Most cancer cells rely on aerobic glycolysis to support uncontrolled proliferation and evade apoptosis. However, pancreatic cancer cells switch to glutamine metabolism to survive under hypoxic conditions. Activation of the Wnt/ß-catenin pathway induces aerobic glycolysis by activating enzymes required for glucose metabolism and regulating the expression of glutamate transporter and glutamine synthetase. The results demonstrate that riluzole inhibits pancreatic cancer cell growth and has no effect on human pancreatic normal ductal epithelial cells. RNA-seq experiments identified the involvement of Wnt and metabolic pathways by riluzole. Inhibition of Wnt-ß-catenin/TCF-LEF pathway by riluzole suppresses the expression of PDK, MCT1, cMyc, AXIN, and CyclinD1. Riluzole inhibits glucose transporter 2 expression, glucose uptake, lactate dehydrogenase A expression, and NAD + level. Furthermore, riluzole inhibits glutamate release and glutathione levels, and elevates reactive oxygen species. Riluzole disrupts mitochondrial homeostasis by inhibiting Bcl-2 and upregulating Bax expression, resulting in a drop of mitochondrial membrane potential. Finally, riluzole inhibits pancreatic cancer growth in KPC (Pdx1-Cre, LSL-Trp53R172H, and LSL-KrasG12D) mice. In conclusion, riluzole can inhibit pancreatic cancer growth by regulating glucose and glutamine metabolisms and can be used to treat pancreatic cancer.


Assuntos
Neoplasias Pancreáticas , Riluzol , Via de Sinalização Wnt , beta Catenina , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Glutamina/metabolismo , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Riluzol/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/metabolismo , Neoplasias Pancreáticas
11.
Curr Cancer Drug Targets ; 22(8): 678-690, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35440334

RESUMO

Chordoma is a rare, slow-growing sarcoma that is locally aggressive and typically resistant to conventional chemo- and radiotherapies. Despite its low incidence, chordoma remains a clinical challenge because therapeutic options for chordoma are limited, and little is known about the molecular mechanisms involved in resistance to therapies. Furthermore, there are currently no established predictive or prognostic biomarkers to follow disease progression or treatment. Whole-genome sequencing of chordoma tissues has demonstrated a low-frequency mutation rate compared to other cancers. This has generated interest in the role of epigenetic events in chordoma pathogenesis. In this review, we discuss the current understanding of the epigenetic drivers of chordoma and their potential applications in prognosis and the development of new therapies.


Assuntos
Cordoma , Cordoma/genética , Cordoma/patologia , Cordoma/terapia , Epigênese Genética , Humanos , Prognóstico
12.
Virus Evol ; 8(1): veab110, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35233291

RESUMO

Zoonotic spillover of animal viruses into human populations is a continuous and increasing public health risk. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) highlights the global impact of emergence. Considering the history and diversity of coronaviruses (CoVs), especially in bats, SARS-CoV-2 will likely not be the last to spillover from animals into human populations. We sampled and tested wildlife in the Central African country Cameroon to determine which CoVs are circulating and how they relate to previously detected human and animal CoVs. We collected animal and ecological data at sampling locations and used family-level consensus PCR combined with amplicon sequencing for virus detection. Between 2003 and 2018, samples were collected from 6,580 animals of several different orders. CoV RNA was detected in 175 bats, a civet, and a shrew. The CoV RNAs detected in the bats represented 17 different genetic clusters, coinciding with alpha (n = 8) and beta (n = 9) CoVs. Sequences resembling human CoV-229E (HCoV-229E) were found in 40 Hipposideridae bats. Phylogenetic analyses place the human-derived HCoV-229E isolates closest to those from camels in terms of the S and N genes but closest to isolates from bats for the envelope, membrane, and RNA-dependent RNA polymerase genes. The CoV RNA positivity rate in bats varied significantly (P < 0.001) between the wet (8.2 per cent) and dry seasons (4.5 per cent). Most sampled species accordingly had a wet season high and dry season low, while for some the opposite was found. Eight of the suspected CoV species of which we detected RNA appear to be entirely novel CoV species, which suggests that CoV diversity in African wildlife is still rather poorly understood. The detection of multiple different variants of HCoV-229E-like viruses supports the bat reservoir hypothesis for this virus, with the phylogenetic results casting some doubt on camels as an intermediate host. The findings also support the previously proposed influence of ecological factors on CoV circulation, indicating a high level of underlying complexity to the viral ecology. These results indicate the importance of investing in surveillance activities among wild animals to detect all potential threats as well as sentinel surveillance among exposed humans to determine emerging threats.

13.
Genes Dis ; 9(2): 531-548, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35224165

RESUMO

Proximal tubule (PT) transports most of the renal Ca2+, which was usually described as paracellular (passive). We found a regulated Ca2+ entry pathway in PT cells via the apical transient receptor potential canonical 3 (TRPC3) channel, which initiates transcellular Ca2+ transport. Although TRPC3 knockout (-/-) mice were mildly hypercalciuric and displayed luminal calcium phosphate (CaP) crystals at Loop of Henle (LOH), no CaP + calcium oxalate (CaOx) mixed urine crystals were spotted, which are mostly found in calcium nephrolithiasis (CaNL). Thus, we used oral calcium gluconate (CaG; 2%) to raise the PT luminal [Ca2+]o further in TRPC3 -/- mice for developing such mixed stones to understand the mechanistic role of PT-Ca2+ signaling in CaNL. Expectedly, CaG-treated mice urine samples presented with numerous mixed crystals with remains of PT cells, which were pronounced in TRPC3 -/- mice, indicating PT cell damage. Notably, PT cells from CaG-treated groups switched their mode of Ca2+ entry from receptor-operated to store-operated pathway with a sustained rise in intracellular [Ca2+] ([Ca2+]i), indicating the stagnation in PT Ca2+ transport. Moreover, those PT cells from CaG-treated groups demonstrated an upregulation of calcification, inflammation, fibrotic, oxidative stress, and apoptotic genes; effects of which were more robust in TRPC3 ablated condition. Furthermore, kidneys from CaG-treated groups exhibited fibrosis, tubular injury and calcifications with significant reactive oxygen species generation in the urine, thus, indicating in vivo CaNL. Taken together, excess PT luminal Ca2+ due to escalation of hypercalciuria in TRPC3 ablated mice induced surplus CaP crystal formation and caused stagnation of PT [Ca2+]i, invoking PT cell injury, hence mixed stone formation.

14.
J Cell Mol Med ; 26(2): 399-409, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34859959

RESUMO

Alcohol is a risk factor for pancreatic cancer. However, the molecular mechanism by which chronic alcohol consumption influences pancreatic cancer development is not well understood. We have recently demonstrated that chronic ethanol exposure of pancreatic normal ductal epithelial cells (HPNE) induces cellular transformation by generating cancer stem cells (CSCs). Here, we examined whether chronic ethanol treatment induces epithelial-mesenchymal transition in HPNE cells and promotes pancreatic cancer development in KC (Pdx1-Cre, and LSL-KrasG12D ) mice. Our data demonstrate that chronic ethanol exposure of HPNE cells induces SATB2 gene and those cells became highly motile. Ethanol treatment of HPNE cells results in downregulation of E-Cadherin and upregulation of N-Cadherin, Snail, Slug, Zeb1, Nanog and BMI-1. Suppression of SATB2 expression in ethanol-transformed HPNE cells inhibits EMT phenotypes. KC mice fed with an ethanol-containing diet show enhanced pancreatic cancer growth and development than those fed with a control diet. Pancreas isolated from KC mice fed with an ethanol-containing diet show higher expression of stem cell markers (CD133, CD44, CD24), pluripotency-maintaining factors (cMyc, KLF4, SOX-2, and Oct-4), N-Cadherin, EMT-transcription factors (Snail, Slug, and Zeb1), and lower expression of E-cadherin than those isolated from mice fed with a control diet. Furthermore, pancreas isolated from KC mice fed with an ethanol-containing diet show higher expression of inflammatory cytokines (TNF-α, IL-6, and IL-8) and PTGS-2 (COX-2) gene than those isolated from mice fed with a control diet. These data suggest that chronic alcohol consumption may contribute to pancreatic cancer development by generating inflammatory signals and CSCs.


Assuntos
Etanol , Neoplasias Pancreáticas , Animais , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Etanol/toxicidade , Humanos , Integrases , Camundongos , Pâncreas/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Fenótipo , Proteínas Proto-Oncogênicas p21(ras)/genética
15.
Front Oncol ; 12: 1072774, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36713532

RESUMO

Background and purpose: Pancreatic cancer (PC) is the fourth leading cause of cancer death in both men and women. The standard of care for patients with locally advanced PC of chemotherapy, stereotactic radiotherapy (RT), or chemo-radiation-therapy has shown highly variable and limited success rates. However, three-dimensional (3D) Pancreatic tumor organoids (PTOs) have shown promise to study tumor response to drugs, and emerging treatments under in vitro conditions. We investigated the potential for using 3D organoids to evaluate the precise radiation and drug dose responses of in vivo PC tumors. Methods: PTOs were created from mouse pancreatic tumor tissues, and their microenvironment was compared to that of in vivo tumors using immunohistochemical and immunofluorescence staining. The organoids and in vivo PC tumors were treated with fractionated X-ray RT, 3-bromopyruvate (3BP) anti-tumor drug, and combination of 3BP + fractionated RT. Results: Pancreatic tumor organoids (PTOs) exhibited a similar fibrotic microenvironment and molecular response (as seen by apoptosis biomarker expression) as in vivo tumors. Untreated tumor organoids and in vivo tumor both exhibited proliferative growth of 6 folds the original size after 10 days, whereas no growth was seen for organoids and in vivo tumors treated with 8 (Gray) Gy of fractionated RT. Tumor organoids showed reduced growth rates of 3.2x and 1.8x when treated with 4 and 6 Gy fractionated RT, respectively. Interestingly, combination of 100 µM of 3BP + 4 Gy of RT showed pronounced growth inhibition as compared to 3-BP alone or 4 Gy of radiation alone. Further, positive identification of SOX2, SOX10 and TGFß indicated presence of cancer stem cells in tumor organoids which might have some role in resistance to therapies in pancreatic cancer. Conclusions: PTOs produced a similar microenvironment and exhibited similar growth characteristics as in vivo tumors following treatment, indicating their potential for predicting in vivo tumor sensitivity and response to RT and combined chemo-RT treatments.

16.
Ecohealth ; 19(4): 443-449, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36629956

RESUMO

Orbiviruses are arthropod borne viruses of vertebrates, with some of them being important pathogens of veterinary, conservation and economic importance, while others are occasionally associated with human disease. Some apparently bat specific orbiviruses have been detected, but little is known about their distribution and diversity. We thus sampled and screened 52 bats living in the Congo Basin, and detected RNA indicative of a novel orbivirus in a single banana serotine (Afronycteris nanus) by PCR. The detected RNA clusters with epizootic haemorrhagic disease virus, bluetongue virus, and others. The findings highlight the need for more studies into arbovirus presence and diversity in bat species.


Assuntos
Arbovírus , Quirópteros , Musa , Orbivirus , Animais , Humanos , Congo , Musa/genética , RNA
17.
PLoS One ; 16(11): e0258951, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34762666

RESUMO

Radiation therapy plays a major role in the treatment of lung cancer patients. However, cancer cells develop resistance to radiation. Tumor radioresistance is a complex multifactorial mechanism which may be dependent on DNA damage and repair, hypoxic conditions inside tumor microenvironment, and the clonal selection of radioresistant cells from the heterogeneous tumor site, and it is a major cause of treatment failure in non-small cell lung cancer (NSCLC). In the present investigation caveolin-1 (CAV-1) has been observed to be highly expressed in radiation resistant A549 lung cancer cells. CRISPR-Cas9 knockout of CAV-1 reverted the cells to a radio sensitive phenotype. In addition, CAV-1 overexpression in parental A549 cells, led to radiation resistance. Further, gene expression analysis of A549 parental, radiation resistant, and caveolin-1 overexpressed cells, exhibited overexpression of DNA repair genes RAD51B, RAD18, SOX2 cancer stem cell marker, MMPs, mucins and cytoskeleton proteins in resistant and caveolin-1 over expressed A549 cells, as compared to parental A549 cells. Bioinformatic analysis shows upregulation of BRCA1, Nuclear Excision DNA repair, TGFB and JAK/STAT signaling pathways in radioresistant and caveolin-1 overexpressed cells, which may functionally mediate radiation resistance. Immunohistochemistry data demonstrated heterogeneous expression of CAV-1 gene in human lung cancer tissues, which was analogous to its enhanced expression in human lung cancer cell line model and mouse orthotopic xenograft lung cancer model. Also, TCGA PanCancer clinical studies have demonstrated amplification, deletions and missense mutation in CAV-1 gene in lung cancer patients, and that CAV-1 alteration has been linked to poor prognosis, and poor survival in lung cancer patients. Interestingly, we have also optimized ELISA assay to measure caveolin-1 protein in the blood of A549 radiation resistant human xenograft preclinical mouse model and discovered higher level of caveolin-1 (950 pg/ml) in tumor bearing animals treated with radiation, as compared to xenograft with radiosensitive lung cancer cells (450 pg/ml). Thus, we conclude that caveolin-1 is involved in radio-resistance and contributes to tumor aggression, and it has potential to be used as prognostic biomarker for radiation treatment response, and tumor progression for precision medicine in lung cancer patients.


Assuntos
Biomarcadores Tumorais/metabolismo , Caveolina 1/metabolismo , Neoplasias Pulmonares/patologia , Tolerância a Radiação , Células A549 , Animais , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Caveolina 1/genética , Reparo do DNA/genética , Dosagem de Genes , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Camundongos Endogâmicos BALB C , Camundongos Nus , Análise em Microsséries , Invasividade Neoplásica , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Prognóstico , Mapas de Interação de Proteínas/genética , Regulação para Cima/genética , Ensaios Antitumorais Modelo de Xenoenxerto
19.
J Cell Mol Med ; 24(19): 11064-11069, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32885593

RESUMO

Several studies have confirmed the involvement of cancer stem cells (CSC) in tumour progression, metastasis, drug resistance and cancer relapse. SATB2 (special AT-rich binding protein-2) acts as a transcriptional co-factor and modulates chromatin architecture to regulate gene expression. The purpose of this review was to discuss the pathophysiological roles of SATB2 and assess whether it could be used as a therapeutic target for cancer. SATB2 modulated the expression of those genes which regulated pluripotency and self-renewal. Overexpression of SATB2 gene in normal epithelial cells was shown to induce transformation, as a result transformed cells gained CSC's characteristics by expressing stem cell markers and pluripotency maintaining factors, suggesting its role as an oncogene. In addition, SATB2 induced epithelial-mesenchymal transition (EMT) and metastasis. Interestingly, the expression of SATB2 was positively correlated with the activation of ß-catenin/TCF-LEF pathway. Furthermore, SATB2 silencing inhibited EMT and their positive regulators, and tumour growth, and suppressed the expression of stem cell markers, pluripotency maintaining factors, cell cycle and cell survival genes, and TCF/LEF targets. Based on the cancer genome atlas (TCGA) expression data and published papers, SATB2 alone or in combination with other proteins could be used a diagnostic biomarker for cancer. Although there is no pharmacological inhibitor of SATB2, studies using genetic approaches suggest that SATB2 could be a potential target for cancer treatment and prevention.


Assuntos
Biomarcadores Tumorais/metabolismo , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Fatores de Transcrição/metabolismo , Animais , Transição Epitelial-Mesenquimal , Humanos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia
20.
JGH Open ; 4(3): 351-359, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32514436

RESUMO

Despite improved screening and surveillance guidelines, significant race/ethnicity-specific disparities in hepatocellular carcinoma (HCC) continue to exist and disproportionately affect minority and disadvantaged populations. This trend indicates that social determinants, genetic, and environmental factors are driving the epidemic at the population level. Race and geography had independent associations with risk of mortality among patients with HCC. The present review discusses the risk factors and issues related to disparities in HCC. The underlying etiologies for these disparities are complex and multifactorial. Some of the risk factors for developing HCC include hepatitis B (HBV) and hepatitis C (HCV) viral infection, nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, smoking and alcohol consumption. In addition, population genetics; socioeconomic and health care access; treatment and prevention differences; and genetic, behavioral, and biological influences can contribute to HCC. Acculturation of ethnic minorities, insurance status, and access to health care may further contribute to the observed disparities in HCC. By increasing awareness, better modalities for screening and surveillance, improving access to health care, and adapting targeted preventive and therapeutic interventions, disparities in HCC outcomes can be reduced or eliminated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA